Hadoop软件处理框架

Hadoop软件处理框架,第1张

一、Hadoop

Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

Hadoop带有用Java语言编写的框架,因此运行在Linux生产平台上是非常理想的。

Hadoop上的应用程序也可以使用其他语言编写,比如C。

二、HPCC

HPCC,HighPerformanceComputingand(高性能计算与通信)的缩写。

1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

该项目主要由五部分组成:

1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;

2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;

3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;

4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支持这些调查和研究活动;

5、信息基础结构技术和应用(IITA),目的在于保证美国在先进信息技术开发方面的领先地位。

三、Storm

Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。

Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、ETL(Extraction--Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和 *** 作。

四、ApacheDrill

为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。ApacheDrill实现了Google‘sDremel

据Hadoop厂商MapR公司产品经理TomerShiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。

该项目将会创建出开源版本的谷歌DremelHadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。

“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在AndroidMarket上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。

五、RapidMiner

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

功能和特点:

免费提供数据挖掘技术和库

100%用Java代码(可运行在 *** 作系统)

数据挖掘过程简单,强大和直观

内部XML保证了标准化的格式来表示交换数据挖掘过程

可以用简单脚本语言自动进行大规模进程

多层次的数据视图,确保有效和透明的数据

图形用户界面的互动原型

命令行(批处理模式)自动大规模应用

JavaAPI(应用编程接口)

简单的插件和推广机制

强大的可视化引擎,许多尖端的高维数据的可视化建模

400多个数据挖掘运营商支持

耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。

六、PentahoBI

PentahoBI平台不同于传统的BI产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

PentahoBI平台,PentahoOpenBI套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过J2EE、WebService、SOAP、>

PentahoSDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。

PentahoBI平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。

七、Splunk

Splunk的功能组件主要有Forwarder、SerchHead、Indexer三种,然后支持了查询搜索、仪表盘和报表(效果真不是吹的,很精致呀),另外还支持SaaS服务模式。其中,Splunk支持的数据源也是多种类型的,基本上还是可以满足客户的需求。

目前支持hadoop1x(MRv1)、Hadoop2x(MRv2)、Hadoop2x(Yarn)三个版本的Hadoop集群的日志数据源收集,在日志管理运维方面还是处于一个国际领先的地位,目前国内有部分的数据驱动型公司也正在采用Splunk的日志管理运维服务。

八、EverString

everstring主要是通过大数据的预测分析建模为企业提供业务和客户推荐的SaaS服务,获取和积累了两个数据信息资源库,一个行业外部的资源库(公有SaaS收费形式),一个行业自己内部的资源库(私有),然后再通过机器学习和人工智能的方法对数据进行相应行业或是领域的建模,最后得到一个比较不错的结果,优化于人工可以得到的结果,而且Everstring也成为了初创大数据公司里面估值很高的公司。

Hadoop是由Java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce

HDFS是一个分布式文件系统,引入存放文件元数据信息的服务器Namenode和实际存放数据的服务器Datanode,对数据进行分布式储存和读取。

MapReduce是一个计算框架,MapReduce的核心思想是把计算任务分配给集群内的服务器里执行。通过对计算任务的拆分(Map计算/Reduce计算)再根据任务调度器(JobTracker)对任务进行分布式计算

总之Hadoop最核心的两个部分是:HDFS(提供分布式海量数据存储)和MapReduce(分布式计算殷勤),一个提供大数据存储,一个提供大数据计算

2 有什么特点?

根据权威组织统计,Hadoop相关组件已经打包几十个,用简单的一句话概括主要的一些组件:

以上只罗列了Hadoop的一些基本组件,应为我只会这几个,其他的还不是很了解。Hadoop家族是大数据处理的基本框架,大家有兴趣可以自己再了解

数据库与hadoop与分布式文件系统的区别和联系

1 用向外扩展代替向上扩展
扩展商用关系型数据库的代价是非常昂贵的。它们的设计更容易向上扩展。要运行一个更大
的数据库,就需要买一个更大的机器。事实上,往往会看到服务器厂商在市场上将其昂贵的高端机
标称为“数据库级的服务器”。不过有时可能需要处理更大的数据集,却找不到一个足够大的机器。
更重要的是,高端的机器对于许多应用并不经济。例如,性能4倍于标准PC的机器,其成本将大大
超过将同样的4台PC放在一个集群中。Hadoop的设计就是为了能够在商用PC集群上实现向外扩展
的架构。添加更多的资源,对于Hadoop集群就是增加更多的机器。一个Hadoop集群的标配是十至
数百台计算机。事实上,如果不是为了开发目的,没有理由在单个服务器上运行Hadoop。
2 用键/值对代替关系表
关系数据库的一个基本原则是让数据按某种模式存放在具有关系型数据结构的表中。虽然关
系模型具有大量形式化的属性,但是许多当前的应用所处理的数据类型并不能很好地适合这个模
型。文本、和XML文件是最典型的例子。此外,大型数据集往往是非结构化或半结构化的。
Hadoop使用键/值对作为基本数据单元,可足够灵活地处理较少结构化的数据类型。在hadoop中,
数据的来源可以有任何形式,但最终会转化为键/值对以供处理。
3 用函数式编程(MapReduce)代替声明式查询(SQL )
SQL 从根本上说是一个高级声明式语言。查询数据的手段是,声明想要的查询结果并让数据库引擎
判定如何获取数据。在MapReduce中,实际的数据处理步骤是由你指定的,它很类似于SQL
引擎的一个执行计划。SQL 使用查询语句,而MapReduce则使用脚本和代码。利用MapReduce可
以用比SQL 查询更为一般化的数据处理方式。例如,你可以建立复杂的数据统计模型,或者改变
图像数据的格式。而SQL 就不能很好地适应这些任务。
4
分布式文件系统(dfs)和分布式数据库都支持存入,取出和删除。但是分布式文件系统比较暴力,
可以当做key/value的存取。分布式数据库涉及精炼的数据,传统的分布式关系型数据库会定义数据元
组的schema,存入取出删除的粒度较小。
分布式文件系统现在比较出名的有GFS(未开源),HDFS(Hadoop distributed file system)。
分布式数据库现在出名的有Hbase,oceanbase。其中Hbase是基于HDFS,而oceanbase是自己内部
实现的分布式文件系统,在此也可以说分布式数据库以分布式文件系统做基础存储。

共享文件与分布式文件系统的区别

分布式文件系统(Distributed File System,DFS)
如果局域网中有多台服务器,并且共享文件夹也分布在不同的服务器上,这就不利于管理员的管理和用户的访问。而使用分布式文件系统,系统管理员就可以把不同服务器上的共享文件夹组织在一起,构建成一个目录树。这在用户看来,所有共享文件仅存储在一个地点,只需访问一个共享的DFS根目录,就能够访问分布在网络上的文件或文件夹,而不必知道这些文件的实际物理位置。

ftp server和分布式文件系统的区别

换个思路,使用mount --bind把目录加载过来就可以了 先将数据盘挂载 mount /dev/sdb1 /mnt/d 在ftp目录下建一个文件夹data mount --bind /mnt/d data

FTP server和分布式文件系统的区别, 分布式文件系统和分布式数据库有什么不同

分布式文件系统(dfs)和分布式数据库都支持存入,取出和删除。但是分布式文件系统比较暴力,可以当做key/value的存取。分布式数据库涉及精炼的数据,传统的分布式关系型数据库会定义数据元组的schema,存入取出删除的粒度较小。
分布式文件系统现在比较出名的有GFS(未开源),HDFS(Hadoop distributed file system)。分布式数据库现在出名的有Hbase,oceanbase。其中Hbase是基于HDFS,而oceanbase是自己内部实现的分布式文件系统,在此也可以说分布式数据库以分布式文件系统做基础存储。

hadoop是分布式文件系统吗

是的
Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。它能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。要理解HDFS的内部工作原理,首先要理解什么是分布式文件系统。
1分布式文件系统
多台计算机联网协同工作(有时也称为一个集群)就像单台系统一样解决某种问题,这样的系统我们称之为分布式系统。
分布式文件系统是分布式系统的一个子集,它们解决的问题就是数据存储。换句话说,它们是横跨在多台计算机上的存储系统。存储在分布式文件系统上的数据自动分布在不同的节点上。
分布式文件系统在大数据时代有着广泛的应用前景,它们为存储和处理来自网络和其它地方的超大规模数据提供所需的扩展能力。
2分离元数据和数据:NameNode和DataNode
存储到文件系统中的每个文件都有相关联的元数据。元数据包括了文件名、i节点(inode)数、数据块位置等,而数据则是文件的实际内容。
在传统的文件系统里,因为文件系统不会跨越多台机器,元数据和数据存储在同一台机器上。
为了构建一个分布式文件系统,让客户端在这种系统中使用简单,并且不需要知道其他客户端的活动,那么元数据需要在客户端以外维护。HDFS的设计理念是拿出一台或多台机器来保存元数据,并让剩下的机器来保存文件的内容。
NameNode和DataNode是HDFS的两个主要组件。其中,元数据存储在NameNode上,而数据存储在DataNode的集群上。NameNode不仅要管理存储在HDFS上内容的元数据,而且要记录一些事情,比如哪些节点是集群的一部分,某个文件有几份副本等。它还要决定当集群的节点宕机或者数据副本丢失的时候系统需要做什么。
存储在HDFS上的每份数据片有多份副本(replica)保存在不同的服务器上。在本质上,NameNode是HDFS的Master(主服务器),DataNode是Slave(从服务器)。

文件系统与数据库系统的区别和联系

其区别在于:
(1)
文件系统用文件将数据长期保存在外存上,数
据库系统用数据库统一存储数据。
(2)
文件系统中的程序和数据有一
定的联系,数据库系统中的程序和数据分离。
(3)
文件系统用 *** 作系
统中的存取方法对数据进行管理,数据库系统用
DBMS
统一管理和控
制数据。
(4)
文件系统实现以文件为单位的数据共享,数据库系统实
现以记录和字段为单位的数据共享。
其联系在于:
(1)
均为数据组织的管理技术。
(2)
均由数据管理软
件管理数据,程序与数据之间用存取方法进行转换。
(3)
数据库系统
是在文件系统的基础上发展而来的。

数据库系统和文件系统的区别与联系

文件系统和数据库系统之间的区别:
(1) 文件系统用文件将数据长期保存在外存上,数据库系统用数据库统一存储数据;
(2) 文件系统中的程序和数据有一定的联系,数据库系统中的程序和数据分离;
(3) 文件系统用 *** 作系统中的存取方法对数据进行管理,数据库系统用DBMS统一管理和控制数据;
(4) 文件系统实现以文件为单位的数据共享,数据库系统实现以记录和字段为单位的数据共享。
文件系统和数据库系统之间的联系:
(1) 均为数据组织的管理技术;
(2) 均由数据管理软件管理数据,程序与数据之间用存取方法进行转换;
(3) 数据库系统是在文件系统的基础上发展而来的。

什么是Hadoop分布式文件系统

分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。
Hadoop是Apache软件基金会所研发的开放源码并行运算编程工具和分散式档案系统,与MapReduce和Google档案系统的概念类似。
HDFS(Hadoop 分布式文件系统)是其中的一部分。

一、hadoop是什么意思?

Hadoop是具体的开源框架,是工具,用来做海量数据的存储和计算的。

二、hadoop与大数据的关系

首先,大数据本身涉及到一个庞大的技术体系,从学科的角度来看,涉及到数学、统计学和计算机三大学科,同时还涉及到社会学、经济学、医学等学科,所以大数据本身的知识量还是非常大的。

从当前大数据领域的产业链来看,大数据领域涉及到数据采集、数据存储、数据分析和数据应用等环节,不同的环节需要采用不同的技术,但是这些环节往往都要依赖于大数据平台,而Hadoop则是当前比较流行的大数据平台之一。

Hadoop平台经过多年的发展已经形成了一个比较完善的生态体系,而且由于Hadoop平台是开源的,所以很多商用的大数据平台也是基于Hadoop搭建的,所以对于初学大数据的技术人员来说,从Hadoop开始学起是不错的选择。

当前Hadoop平台的功能正在不断得到完善,不仅涉及到数据存储,同时也涉及到数据分析和数据应用,所以对于当前大数据应用开发人员来说,整体的知识结构往往都是围绕大数据平台来组织的。随着大数据平台逐渐开始落地到传统行业领域,大数据技术人员对于大数据平台的依赖程度会越来越高。

当前从事大数据开发的岗位可以分为两大类,一类是大数据平台开发,这一类岗位往往是研发级岗位,不仅岗位附加值比较高,未来的发展空间也比较大,但是大数据平台开发对于从业者的要求比较高,当前有不少研究生在毕业后会从事大数据平台开发岗位。

另一类是大数据应用开发岗位,这类岗位的工作任务就是基于大数据平台(Hadoop等)来进行行业应用开发,在工业互联网时代,大数据应用开发岗位的数量还是比较多的,而且大数据应用开发岗位对于从业者的要求也相对比较低。

hadoop的特点是高容错性、高吞吐量。
hadoop是一个由Apache基金会所开发的分布式系统基础架构。它可以使用户在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。hadoop的框架最核心的设计就是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。
Hadoop由ApacheSoftwareFoundation公司于2005年秋天作为Lucene的子项目Nutch的一部分正式引入。它受到最先由GoogleLab开发的Map/Reduce和GoogleFileSystem(GFS)的启发。
Hadoop是最受欢迎的在Internet上对搜索关键字进行内容分类的工具,但它也可以解决许多要求极大伸缩性的问题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10669849.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存