一、 观察法:
观查主芯片,PCB板,电源IC,各个插槽。
① 观查主芯片是否有明显的烧糊,烧焦现象,烧爆。
② 看各个插槽是否有短路现象。
二、 触摸法:(通电一段时间):触摸主板的各芯片,IC等,看它是否过热或过凉现象存在。 过热:①内部短路,②电源电压高。 过凉:①开路,②无供电,③工作条件不满足。
三、 电阻法:
ISA:前8条D线对地R相同。
前期20条A线对地R相同(有的板是分段现象)。
后7条A线对地R相同。
后8条D线对地R相同。
它们彼此间一般不超过15Ω,IRQ、DRQ、DACK相差 不超过25Ω。
PCI:
32条AD线对地R相同,部分主板可能有一条较其它的31条对地小几十Ω属正常。
AGP:
32条AD,32条AD线对地R相同
四、 波形法:
重要测试点:RESET、SCLK、OSC、BE0- BE7(允许数据地址工作的信号)A3(反映南桥工作的标志)、CS、OE。
五、 锁波法:针对照586以下的主板,PⅡ、PⅢ不允许,否则烧CPU)。
将CPU座上的A23-VCC连接起来,通过比较测试点的波,同段同位数据信号波形一致若有不一致,结合电阻法找故障点。(前提:CPU工作三大条件满足,ISA和PCI槽上有点波)。
六、 数码卡法:(反应BIOS自检的过程)
FF、00 CPU不工作或工作条件不满足,主板有严重故障(主查CPU工作的三大条件、BIOS、主芯片)。
CI、C6 内存槽(内存条)内存控制部分(主查内存供电,北桥,内存槽,时钟故障等)。
31应该显示,若不显示,查PCI上的AD线,可能存存在开路或短路。
3d、42
4E按F1
00 41 BIOS 可能性较大 COMS 电路 RTC
C1→05→C1→05(循环)
1,内存槽。2,CPU供电。3,I/O芯片。4,KBC。
U1→05→U1→05(循环)
七、逻辑推理法:
主要用于推断TTL、74系列,门电路的好坏。
非门:反向器 或门:加法器 与门:乘法器
八、替换法:在不能确定具体部件时,用好的部件去替换被怀疑的部件,这个方法在实际中应用很多。
维修八字方针:部、级、路、点、道、管、交、校。
常见故障
主板常见故障:
电源故障 2,总线故障 3,关键性故障 4,非关键性故障
不能触发:
1、 实时时钟32768坏及发生器周边电阻,电容坏。
2、 供电部分三极管
3、 74F00、74F14及其周边电阻、二极管、三极管。
4、 电池失效。
5、 南桥。
6、 I/O芯片。
ATX电源的紫色、绿色线相联的线路。(既触发部分)
(不开机:1、cpu地址线A3,一定有波,若无波南桥坏。
2、数据线DP1、DP3若无此信号,而周围有,则为南桥坏。
若此处有波,而BIOS无波,BIOS坏或南桥。
3、BE0-BE7,若一点波都没有,北桥坏,(不上CPU也应有
一点波)。
4、U1-UB不开机,在BE0-BE7,BIOS上的A、D线正常的前提下,量CPU上的A、D线来判断南、北桥的工作情况,此时极有可能为南桥坏。)
不能记忆:
1、 电池。
2、 32768晶振
3、 RTC(南桥)。
4、 CMOS电路
自动关机:
1、 南桥周边元件。
2、 7400、74L4及其周边元件
3、 主机电源(ATX)功率不够。
4、 主板上电源对地间接短路。
加电烧主板(或冒烟)
1、 电源。(+12电源和+5V对地短路,主要是供电三极管和电解电容)
2、 COM口控制芯片。
3、 COM口旁的电阻。
4、 插槽短路或人为短路(锡渣)
不开机的维修:
1、 先查三大条件:VCC、CLK、RESET。(主要是CPU)
2、 在三大条件正常的前提下,测BIOS的确22脚CS,24脚OE。
量CPU座AGP、PCI、ISA、SIMM或DIMM的R对地来判断南桥、北桥、I/O芯片的好坏。
电源故障
①PⅡ及以上板有三组供电:1、33V 2、18V-22V 3、15V。
1、33V一般为各IC供电,电压,由ATX电源橙色线直接提供。
2、18V-22V,由2个场效应管和电源IC(TL494CN)输出。
3、15V的由一个场效管输出(1084)。
上述的电源IC494CN和场效应管不是每种主板都是固定的,其它板有可能不是同一种IC和场效管。
注:在测场效应管或其它类型电源三极管时,一般测验它有电压输入输出则好,若有输入无输出电压,此管坏。
一、在测15V和33V时不用插CPU,但测18V-22V电压时大多板要插上CPU测例如:1084管看是否有15V电压。注:测SOCKET370CPU时,把CPU插脚第一排的3脚和二排的4脚短路就相当于插上CPU,防止烧CPU,然后测验1084输出脚是否有15V电压。
二、有一部分主板必须插上CPU,CPU的脚才会有供电,时钟(CLK、OSC)复位RESET。
三、给CPU的第一排3脚和第二排4脚短路相当于接了假负载。
不读内存C1、C6、U1、U6。
1、 首先看内存槽是否有接触不良。
2、 查看内存的RAS(行选通)、CS(片选)VCC(供电)。
3、 查PCI与内存之间的线路,即通过量PCI、内存槽、CPU座上的A、D线来判断北桥芯片
的好坏。
4、 时钟故障,变有可能导致不读内存。
内存过31,跳了线,还不显示
1、 PCI槽上的AD线,此时多为AD线断路。
2、 查北桥与南桥之间的数据线。
中断故障。
BIOS问题:FF、05、07、41、0B
IRQ1:8042K/B;IRQ2:串接8259#2级联
IRQ3:COM2(ISA B25)
IRQ4:COM1(ISA B24)
IRQ5:LPT2(打印卡)(ISA B23)
IRQ6:FDD(ISA B22);IRQ7:LPT1
IRQ8:CMOS时钟;IRQ9-IRQ11:保留
IRQ12:鼠标(ISA D5);IRQ13:80387协处理器
IRQ14:HDD(ISA D7);IRQ15:HDD(ISA D6)
死机故障的维修:
1、 CPU座接触不良。
2、 CACHE损坏,运行到一定时间后死机(不能进入WIN98)。
3、 BIOS资料丢失。
4、 运行大的文件死机时,多为内存出错。
5、 P2板死机多为电压故障,时钟故障。
6、 断开法。(断开被怀疑的芯片,看阻值是否恢复正常,)
7、 排除法(结合其它方法,灵活用)。
8、 对换法。(用好的元件替换被怀疑的芯片)
9、 波形法(主要查D、A、AD线,控制线有无正常的脉冲),用示波器测。
10、 锁波法:586,连CPU座 A23→VCC。
486,连CPU座 A23→VCC。
锁波的前提:CPU工作的三大条件满足,ISA上的A、D有一点波形。
11、 软件诊断法:串并口的检测。(参看用CHECK IT 软件的方法)
12、 数码卡法:(可大致确定故障范围,但不能确定,需结合其它方法共同运用。)
维修步骤:
1、 观察主板有无明显短断路。
2、 通电、触摸主板各芯片IC是否严重发热或发凉。
3、 跳动好线、CPU电压、外频、倍频。
4、 通电检测CPU供电正常与否。
5、 插上CPU观察数码卡,,若无跳动,首先查CPU工作三大条件,在三大条件满足的前提下测ISA上AD线的波形。
① D或A无波:BIOS、南桥、北桥、BE线路部分。
② D、A均无波:主要查南桥、北桥的工作条件周边及本身。
③ D无波:南桥、BIOS部分。
④ A、D均无波:只有通过量对地阻值的方法查找故障范围。
⑤ A、D均有一点点波,但仍显示FF,可通过波形法,电阻法确定故障范围。
主板易坏元件
① 电源:场效应管、电源驱动IC
② I/O芯片、南北桥、BIOS。
③ 大滤波电容容量减小、漏电烧焦。
④ 电阻、电容等。晶振,74系列门电路。电池
⑤ 二极管,三极管,小电感,保险,串口芯片,小排阻
简易判断主板芯片好坏的方法:
1、 测阻值。
2、 测有时钟输入、无时钟输入(芯片坏)。
3、 北桥芯片损坏多鼓起来一点。
4、 33V对地短路多为BGA故障、I/O芯片、时钟发生器、电源IC。
5、 DBSY(数据忙信号):拆理BIOS,插上CPU(三大条件满足),测无波,北桥坏。
6、 新板故障多为:电源IC,I/O部分,BIOS。旧板故障多为:南桥(FX、VX),BIOS,
7、 I/O。
数码卡的检测实例:
07—09 死机; 08—09 内存有问题;01、04 除了内存条以外的主板没有开机;
01—11 都与内存有关系;╩ 显卡有问题;U1—U6 不读内存C1、C6;
05—07 KEYBOARD有问题;4b 有显示;b9 除bus外,还有可能北桥,内存有问题。
╘B、╘5 内存有问题(北桥部分);53—54 开机,但不读内存,之前不开机;
╩ 显示部分短路;08—25 查北桥P部分;07 RTC
有显示后,屏幕提示的故障:
CPU频率错:查跳线、设置、时钟频率等
内存容量报错:内存槽接触不良、北桥虚焊或坏 查内存槽的数据、地址、控制线(阻值和波型)
硬盘控制错或不读硬盘:1、查硬盘接口上的RESET信号或IDE各个引脚的对地阻值。2、查跟IDE相联系的244,245或排阻。3、南桥
软驱不读或报错:1、查软驱接口的对地阻值。2、I/O芯片 3、南桥
键盘无作用:查RESET,CLK,DATA,+5V及其相关的线路如键盘插口和供电的小电感、保险
或I/O 芯片或南桥内部
COM口 无作用:75232的+-12V, I/O芯片,或芯片的供电
并行口无作用:查I/O芯片,和南桥
COM口和并行口还可以用CHECK IT 软件查故障所在
PS-2的鼠标无作用: 供电脚 I/O和南桥
声卡维修
1、 不能检测:查供电,主芯片,晶振。
2、 CD有声,VCD无声→多为声卡上的主芯片坏。
3、 CD无声,但能检测→功放IC坏。
4、 主芯片(BGA)
功放IC
CD噪声大→多为功放IC周边电容损坏。
供电 BGA→33V供电。
功放IC→多为虎作伥2025,1819IC。
声卡→为5V供电。
5、 不能装声卡驱动程序,或驱动不了声卡,但能检测到声卡,多为声卡上用的是打磨的IC(BGA、主芯片),此时应用原装盘驱动此声卡。
显卡维修
不显示(一点反应都没有,屏幕上):应查主IC供电,不对为IC本身坏,或BIOS不对或坏。
活动显存
活动显存
显存
②坏
可插拔显存 花屏
主芯片(BGA)
显存
BIOS
AD(地址,数据复合信号)
RESET复位
SCLK时钟控制信号
OSC实时时钟信号等
①坏
白光
输出端
晶振 输入端
从PCI槽或AGP槽的各脚获得
AGP槽无OSC(实时时钟信号)
1、显卡不显卡:查供电,BIOS,晶振。
2、花屏:显存②坏或BIOS不对,加速端显存坏,主芯片坏,晶振坏。
3、白光:显存①坏。
3、 变色:主芯片或①②显存或活动显存坏→可先拔下活动显存查看。
4、 偏色:三其色不对→主芯片坏。
5、 缺色:主芯片输出端电阻或保险(电感)坏。
注:主板上和声卡,显卡上的保险都是用电感L,电阻R来代替。
维修要点
1. BIOS作用:BIOS是开机初始化,检测系统安装设备类型,数量等。
2. RESET的产生过程:PG→(门电路,南桥)→RESET复位(ISA槽B2脚,PCI槽A8脚,AGP槽B4脚,IDE的确1脚)
3. CLK产生过程晶振 门电路 南桥 ISA 20脚 PCI 的D8 AGP的D4 OSC 基本时钟 开电就有,直接送到ISA的B30,如没有OSC 则时钟发生器坏
4. 主板不能触发 电源排线的灰线经过一个三极管或门电路(244,245)受IO芯片控制和南桥,再从IO 和南桥到PW—ON 插针。(ATX 电源可以强行短路8脚与地来触发主板)
5. 判断主板的故障时,一定要测CPU 三组电压33V 15V 2V RESET,SCLK,内存供电33V,是否正常,再看其他的原因
6. 实时时钟的晶振坏 只是时间不走
7. CPU旁边的两个大管当不上CPU 时,可能无电压输出,插上CPU,应有33V和15V给CPU 剩下的20V 内核由旁边的一个小管子供给
8. 有些SCLK 信号不经过南桥,直接到CPU 脚和AGPPCI
9. 电源插座(主板上)各电压通向哪里?掌握RESET、CLK、READY、PG信号产生RESET、PG→时钟发生器→CPU(RESET)。主板上印制线曲曲折:是为了满足信号同步的需要。
10.BIOS的22脚CS(片选)由CPU产生→北桥→南桥→BIOS的22脚。
11.若诊断卡跳C1-C6,U1-U6表示不读内存①首先看内存是否有短路,接触不良。②查内存的RAS,CAS,CS,VCC。
12.若不能触发,查灰线→经过电阻,电容→7414门电路→南桥→ISAB02,PCID8,CPU。
13.若橙线性3.3V对地适中多为BGA故障①BGA,②I/O芯片,③时钟发生器,④电源IC。
14.DBSY(370CPU上就有)→数据忙信号:拆下BIOS,插上CPU,测若无波,北桥坏,前提是(CLK,RESET,VCC)都具备。CPU上的CLK是时钟发生器经过北桥到CPU座上的。
15.新板故障多在①电源IC②I/O芯片③BIOS。旧板故障多在①南桥(FX,VX )②BIOS③I/O芯片。
16.不能显示①电源部分②时钟发生器③I/O芯片。
17.IDE不能检测→多是IDE口旁边小排坏了。
18.开机不显示→CPU可工作(即POST显示到达26)→BIOS坏(换)。
19.PⅡ,PⅢ死机①主芯片散热不良②时钟发生器或晶振坏③CPU供电不正常④CPU座接触不良。
20.电源插座上绿色线5V,一路到I/O芯片,一路经过门电路到南桥。
21.待命电压由电源紫色线→电容,电阻→一路到I/O芯片,一路到南桥,一路到北桥。
注:待命电压5V,只要是电源插头插到主板上,北桥,南桥或I/O芯片就有5V电压,主板如果不触发它,南北桥不应有温度。
22.I/O芯片也有几脚连接到北桥。
23.CPU发出CS(片选)信号→北桥→南桥→BIOS22脚,当BIOS的22脚收到CS信号后,24脚就输出一个OE(允许输出)信号。
24.检查RESET复位信号故障时,不但要检测时钟信号产生电路,不要检测PG信号和RC电路。
25.①内存二排二行10脚CS片选是由北桥提供的。②BIOS22脚上的CS产生过程是由CPU→北桥→南桥→BIOS的22脚。锁存器,还是74系列的比较多。
型号 内容
74ls00 2输入四与非门
74ls01 2输入四与非门 (oc)
74ls02 2输入四或非门
74ls03 2输入四与非门 (oc)
74ls04 六倒相器
74ls05 六倒相器(oc)
74ls06 六高压输出反相缓冲器/驱动器(oc,30v)
74ls07 六高压输出缓冲器/驱动器(oc,30v)
74ls08 2输入四与门
74ls09 2输入四与门(oc)
74ls10 3输入三与非门
74ls11 3输入三与门
74ls12 3输入三与非门 (oc)
74ls13 4输入双与非门 (斯密特触发)
74ls14 六倒相器(斯密特触发)
74ls15 3输入三与门 (oc)
74ls16 六高压输出反相缓冲器/驱动器(oc,15v)
74ls17 六高压输出缓冲器/驱动器(oc,15v)
74ls18 4输入双与非门 (斯密特触发)
74ls19 六倒相器(斯密特触发)
74ls20 4输入双与非门
74ls21 4输入双与门
74ls22 4输入双与非门(oc)
74ls23 双可扩展的输入或非门
74ls24 2输入四与非门(斯密特触发)
74ls25 4输入双或非门(有选通)
74ls26 2输入四高电平接口与非缓冲器(oc,15v)
74ls27 3输入三或非门
74ls28 2输入四或非缓冲器
74ls30 8输入与非门
74ls31 延迟电路
74ls32 2输入四或门
74ls33 2输入四或非缓冲器(集电极开路输出)
74ls34 六缓冲器
74ls35 六缓冲器(oc)
74ls36 2输入四或非门(有选通)
74ls37 2输入四与非缓冲器
74ls38 2输入四或非缓冲器(集电极开路输出)
74ls39 2输入四或非缓冲器(集电极开路输出)
74ls40 4输入双与非缓冲器
74ls41 bcd-十进制计数器
74ls42 4线-10线译码器(bcd输入)
74ls43 4线-10线译码器(余3码输入)
74ls44 4线-10线译码器(余3葛莱码输入)
74ls45 bcd-十进制译码器/驱动器
74ls46 bcd-七段译码器/驱动器
74ls47 bcd-七段译码器/驱动器
74ls48 bcd-七段译码器/驱动器
74ls49 bcd-七段译码器/驱动器(oc)
74ls50 双二路2-2输入与或非门(一门可扩展)
74ls51 双二路2-2输入与或非门
74ls51 二路3-3输入,二路2-2输入与或非门
74ls52 四路2-3-2-2输入与或门(可扩展)
74ls53 四路2-2-2-2输入与或非门(可扩展)
74ls53 四路2-2-3-2输入与或非门(可扩展)
74ls54 四路2-2-2-2输入与或非门
74ls54 四路2-3-3-2输入与或非门
74ls54 四路2-2-3-2输入与或非门
74ls55 二路4-4输入与或非门(可扩展)
74ls60 双四输入与扩展
74ls61 三3输入与扩展
74ls62 四路2-3-3-2输入与或扩展器
74ls63 六电流读出接口门
74ls64 四路4-2-3-2输入与或非门
74ls65 四路4-2-3-2输入与或非门(oc)
74ls70 与门输入上升沿jk触发器
74ls71 与输入r-s主从触发器
74ls72 与门输入主从jk触发器
74ls73 双j-k触发器(带清除端)
74ls74 正沿触发双d型触发器(带预置端和清除端)
74ls75 4位双稳锁存器
74ls76 双j-k触发器(带预置端和清除端)
74ls77 4位双稳态锁存器
74ls78 双j-k触发器(带预置端,公共清除端和公共时钟端)
74ls80 门控全加器
74ls81 16位随机存取存储器
74ls82 2位二进制全加器(快速进位)
74ls83 4位二进制全加器(快速进位)
74ls84 16位随机存取存储器
74ls85 4位数字比较器
74ls86 2输入四异或门
74ls87 四位二进制原码/反码/oi单元
74ls89 64位读/写存储器
74ls90 十进制计数器
74ls91 八位移位寄存器
74ls92 12分频计数器(2分频和6分频)
74ls93 4位二进制计数器
74ls94 4位移位寄存器(异步)
74ls95 4位移位寄存器(并行io)
74ls96 5位移位寄存器
74ls97 六位同步二进制比率乘法器
74ls100 八位双稳锁存器
74ls103 负沿触发双j-k主从触发器(带清除端)
74ls106 负沿触发双j-k主从触发器(带预置,清除,时钟)
2006-4-24 22:18 回复
2223021 2楼
74ls107 双j-k主从触发器(带清除端)
74ls108 双j-k主从触发器(带预置,清除,时钟)
74ls109 双j-k触发器(带置位,清除,正触发)
74ls110 与门输入j-k主从触发器(带锁定)
74ls111 双j-k主从触发器(带数据锁定)
74ls112 负沿触发双j-k触发器(带预置端和清除端)
74ls113 负沿触发双j-k触发器(带预置端)
74ls114 双j-k触发器(带预置端,共清除端和时钟端)
74ls116 双四位锁存器
74ls120 双脉冲同步器/驱动器
74ls121 单稳态触发器(施密特触发)
74ls122 可再触发单稳态多谐振荡器(带清除端)
74ls123 可再触发双单稳多谐振荡器
74ls125 四总线缓冲门(三态输出)
74ls126 四总线缓冲门(三态输出)
74ls128 2输入四或非线驱动器
74ls131 3-8译码器
74ls132 2输入四与非门(斯密特触发)
74ls133 13输入端与非门
74ls134 12输入端与门(三态输出)
74ls135 四异或/异或非门
74ls136 2输入四异或门(oc)
74ls137 八选1锁存译码器/多路转换器
74ls138 3-8线译码器/多路转换器
74ls139 双2-4线译码器/多路转换器
74ls140 双4输入与非线驱动器
74ls141 bcd-十进制译码器/驱动器
74ls142 计数器/锁存器/译码器/驱动器
74ls145 4-10译码器/驱动器
74ls147 10线-4线优先编码器
74ls148 8线-3线八进制优先编码器
74ls150 16选1数据选择器(反补输出)
74ls151 8选1数据选择器(互补输出)
74ls152 8选1数据选择器多路开关
74ls153 双4选1数据选择器/多路选择器
74ls154 4线-16线译码器
74ls155 双2-4译码器/分配器(图腾柱输出)
74ls156 双2-4译码器/分配器(集电极开路输出)
74ls157 四2选1数据选择器/多路选择器
74ls158 四2选1数据选择器(反相输出)
74ls160 可预置bcd计数器(异步清除)
74ls161 可预置四位二进制计数器(并清除异步)
74ls162 可预置bcd计数器(异步清除)
74ls163 可预置四位二进制计数器(并清除异步)
74ls164 8位并行输出串行移位寄存器
74ls165 并行输入8位移位寄存器(补码输出)
74ls166 8位移位寄存器
74ls167 同步十进制比率乘法器
74ls168 4位加/减同步计数器(十进制)
74ls169 同步二进制可逆计数器
74ls170 44寄存器堆
74ls171 四d触发器(带清除端)
74ls172 16位寄存器堆
74ls173 4位d型寄存器(带清除端)
74ls174 六d触发器
74ls175 四d触发器
74ls176 十进制可预置计数器
74ls177 2-8-16进制可预置计数器
74ls178 四位通用移位寄存器
74ls179 四位通用移位寄存器
74ls180 九位奇偶产生/校验器
74ls181 算术逻辑单元/功能发生器
74ls182 先行进位发生器
74ls183 双保留进位全加器
74ls184 bcd-二进制转换器
74ls185 二进制-bcd转换器
74ls190 同步可逆计数器(bcd,二进制)
74ls191 同步可逆计数器(bcd,二进制)
74ls192 同步可逆计数器(bcd,二进制)
74ls193 同步可逆计数器(bcd,二进制)
74ls194 四位双向通用移位寄存器
74ls195 四位通用移位寄存器
74ls196 可预置计数器/锁存器
74ls197 可预置计数器/锁存器(二进制)
74ls198 八位双向移位寄存器
74ls199 八位移位寄存器
74ls210 2-5-10进制计数器
74ls213 2-n-10可变进制计数器
74ls221 双单稳触发器
74ls230 八3态总线驱动器
74ls231 八3态总线反向驱动器
74ls240 八缓冲器/线驱动器/线接收器(反码三态输出)
74ls241 八缓冲器/线驱动器/线接收器(原码三态输出)
74ls242 八缓冲器/线驱动器/线接收器
74ls243 4同相三态总线收发器
74ls244 八缓冲器/线驱动器/线接收器
74ls245 八双向总线收发器
74ls246 4线-七段译码/驱动器(30v)
74ls247 4线-七段译码/驱动器(15v)
74ls248 4线-七段译码/驱动器
74ls249 4线-七段译码/驱动器
74ls251 8选1数据选择器(三态输出)
74ls253 双四选1数据选择器(三态输出)
2006-4-24 22:18 回复
2223021 3楼
74ls256 双四位可寻址锁存器
74ls257 四2选1数据选择器(三态输出)
74ls258 四2选1数据选择器(反码三态输出)
74ls259 8为可寻址锁存器
74ls260 双5输入或非门
74ls261 42并行二进制乘法器
74ls265 四互补输出元件
74ls266 2输入四异或非门(oc)
74ls270 2048位rom (512位四字节,oc)
74ls271 2048位rom (256位八字节,oc)
74ls273 八d触发器
74ls274 44并行二进制乘法器
74ls275 七位片式华莱士树乘法器
74ls276 四jk触发器
74ls278 四位可级联优先寄存器
74ls279 四s-r锁存器
74ls280 9位奇数/偶数奇偶发生器/较验器
74ls281
74ls283 4位二进制全加器
74ls290 十进制计数器
74ls291 32位可编程模
74ls293 4位二进制计数器
74ls294 16位可编程模
74ls295 四位双向通用移位寄存器
74ls298 四-2输入多路转换器(带选通)
74ls299 八位通用移位寄存器(三态输出)
74ls348 8-3线优先编码器(三态输出)
74ls352 双四选1数据选择器/多路转换器
74ls353 双4-1线数据选择器(三态输出)
74ls354 8输入端多路转换器/数据选择器/寄存器,三态补码输出
74ls355 8输入端多路转换器/数据选择器/寄存器,三态补码输出
74ls356 8输入端多路转换器/数据选择器/寄存器,三态补码输出
74ls357 8输入端多路转换器/数据选择器/寄存器,三态补码输出
74ls365 6总线驱动器
74ls366 六反向三态缓冲器/线驱动器
74ls367 六同向三态缓冲器/线驱动器
74ls368 六反向三态缓冲器/线驱动器
74ls373 八d锁存器
74ls374 八d触发器(三态同相)
74ls375 4位双稳态锁存器
74ls377 带使能的八d触发器
74ls378 六d触发器
74ls379 四d触发器
74ls381 算术逻辑单元/函数发生器
74ls382 算术逻辑单元/函数发生器
74ls384 8位1位补码乘法器
74ls385 四串行加法器/乘法器
74ls386 2输入四异或门
74ls390 双十进制计数器
74ls391 双四位二进制计数器
74ls395 4位通用移位寄存器
74ls396 八位存储寄存器
74ls398 四2输入端多路开关(双路输出)
74ls399 四-2输入多路转换器(带选通)
74ls422 单稳态触发器
74ls423 双单稳态触发器
74ls440 四3方向总线收发器,集电极开路
74ls441 四3方向总线收发器,集电极开路
74ls442 四3方向总线收发器,三态输出
74ls443 四3方向总线收发器,三态输出
74ls444 四3方向总线收发器,三态输出
74ls445 bcd-十进制译码器/驱动器,三态输出
74ls446 有方向控制的双总线收发器
74ls448 四3方向总线收发器,三态输出
74ls449 有方向控制的双总线收发器
74ls465 八三态线缓冲器
74ls466 八三态线反向缓冲器
74ls467 八三态线缓冲器
74ls468 八三态线反向缓冲器
74ls490 双十进制计数器
74ls540 八位三态总线缓冲器(反向)
74ls541 八位三态总线缓冲器
74ls589 有输入锁存的并入串出移位寄存器
74ls590 带输出寄存器的8位二进制计数器
74ls591 带输出寄存器的8位二进制计数器
74ls592 带输出寄存器的8位二进制计数器
74ls593 带输出寄存器的8位二进制计数器
74ls594 带输出锁存的8位串入并出移位寄存器
74ls595 8位输出锁存移位寄存器
74ls596 带输出锁存的8位串入并出移位寄存器
74ls597 8位输出锁存移位寄存器
74ls598 带输入锁存的并入串出移位寄存器
74ls599 带输出锁存的8位串入并出移位寄存器
74ls604 双8位锁存器
74ls605 双8位锁存器
74ls606 双8位锁存器
74ls607 双8位锁存器
74ls620 8位三态总线发送接收器(反相)
74ls621 8位总线收发器
74ls622 8位总线收发器
74ls623 8位总线收发器
74ls640 反相总线收发器(三态输出)
74ls641 同相8总线收发器,集电极开路
74ls642 同相8总线收发器,集电极开路
74ls643 8位三态总线发送接收器
74ls644 真值反相8总线收发器,集电极开路
74ls645 三态同相8总线收发器
74ls646 八位总线收发器,寄存器
74ls647 八位总线收发器,寄存器
74ls648 八位总线收发器,寄存器
74ls649 八位总线收发器,寄存器
74ls651 三态反相8总线收发器
74ls652 三态反相8总线收发器
74ls653 反相8总线收发器,集电极开路
74ls654 同相8总线收发器,集电极开路
74ls668 4位同步加/减十进制计数器
74ls669 带先行进位的4位同步二进制可逆计数器
74ls670 44寄存器堆(三态)
74ls671 带输出寄存的四位并入并出移位寄存器
74ls672 带输出寄存的四位并入并出移位寄存器
74ls673 16位并行输出存储器,16位串入串出移位寄存器
74ls674 16位并行输入串行输出移位寄存器
74ls681 4位并行二进制累加器
74ls682 8位数值比较器(图腾柱输出)
74ls683 8位数值比较器(集电极开路)
74ls684 8位数值比较器(图腾柱输出)
74ls685 8位数值比较器(集电极开路)
74ls686 8位数值比较器(图腾柱输出)
74ls687 8位数值比较器(集电极开路)
74ls688 8位数字比较器(oc输出)
74ls689 8位数字比较器
74ls690 同步十进制计数器/寄存器(带数选,三态输出,直接清除)
74ls691 计数器/寄存器(带多转换,三态输出)
74ls692 同步十进制计数器(带预置输入,同步清除)
74ls693 计数器/寄存器(带多转换,三态输出)
74ls696 同步加/减十进制计数器/寄存器(带数选,三态输出,直接清除)
74ls697 计数器/寄存器(带多转换,三态输出)
74ls698 计数器/寄存器(带多转换,三态输出)
74ls699 计数器/寄存器(带多转换,三态输出)
74ls716 可编程模n十进制计数器
74ls718 可编程模n十进制计数器
元件名称 中文名 说明
7407 驱动门
1N914 二极管
74Ls00 与非门
74LS04 非门
74LS08 与门
74LS390 TTL 双十进制计数器
7SEG 4针BCD-LED 输出从0-9 对应于4根线的BCD码
7SEG 3-8译码器电路BCD-7SEG[size=+0]转换电路
ALTERNATOR 交流发电机
AMMETER-MILLI mA安培计
AND 与门
BATTERY 电池/电池组
BUS 总线
CAP 电容
CAPACITOR 电容器
CLOCK 时钟信号源
CRYSTAL 晶振
D-FLIPFLOP D触发器
FUSE 保险丝
GROUND 地
LAMP 灯
LED-RED 红色发光二极管
LM016L 2行16列液晶 可显示2行16列英文字符,有8位数据总线D0-D7,RS,R/W,EN三个控制端口(共14线),工作电压为5V。没背光,和常用的1602B功能和引脚一样(除了调背光的二个线脚)
LOGIC ANALYSER 逻辑分析器
LOGICPROBE 逻辑探针
LOGICPROBE[BIG] 逻辑探针 用来显示连接位置的逻辑状态
LOGICSTATE 逻辑状态 用鼠标点击,可改变该方框连接位置的逻辑状态
LOGICTOGGLE 逻辑触发
MASTERSWITCH 按钮 手动闭合,立即自动打开
MOTOR 马达
OR 或门
POT-LIN 三引线可变电阻器
POWER 电源
RES 电阻
RESISTOR 电阻器
SWITCH 按钮 手动按一下一个状态
SWITCH-SPDT 二选通一按钮
VOLTMETER 伏特计
VOLTMETER-MILLI mV伏特计
VTERM 串行口终端
Electromechanical 电机
Inductors 变压器
Laplace Primitives 拉普拉斯变换
Memory Ics
Microprocessor Ics
Miscellaneous 各种器件 AERIAL-天线;ATAHDD;ATMEGA64;BATTERY;CELL;CRYSTAL-晶振;FUSE;METER-仪表;
Modelling Primitives 各种仿真器件 是典型的基本元器模拟,不表示具体型号,只用于仿真,没有PCB
Optoelectronics 各种发光器件 发光二极管,LED,液晶等等
PLDs & FPGAs
Resistors 各种电阻
Simulator Primitives 常用的器件
Speakers & Sounders
Switches & Relays 开关,继电器,键盘
Switching Devices 晶阊管
Transistors 晶体管(三极管,场效应管)
TTL 74 series
TTL 74ALS series
TTL 74AS series
TTL 74F series
TTL 74HC series
TTL 74HCT series
TTL 74LS series
TTL 74S series
Analog Ics 模拟电路集成芯片
Capacitors 电容集合
CMOS 4000 series
Connectors 排座,排插
Data Converters ADC,DAC
Debugging Tools 调试工具
ECL 10000 Series
------------------------------------------------------------
PROTEUS元件库元件名称及中英对照
AND 与门
ANTENNA 天线
BATTERY 直流电源
BELL 铃,钟
BVC 同轴电缆接插件
BRIDEG 1 整流桥(二极管)
BRIDEG 2 整流桥(集成块)
BUFFER 缓冲器
BUZZER 蜂鸣器
CAP 电容
CAPACITOR 电容
CAPACITOR POL 有极性电容
CAPVAR 可调电容
CIRCUIT BREAKER 熔断丝
COAX 同轴电缆
CON 插口
CRYSTAL 晶体整荡器
DB 并行插口
DIODE 二极管
DIODE SCHOTTKY 稳压二极管
DIODE VARACTOR 变容二极管
DPY_3-SEG 3段LED
DPY_7-SEG 7段LED
DPY_7-SEG_DP 7段LED(带小数点)
ELECTRO 电解电容
FUSE 熔断器
INDUCTOR 电感
INDUCTOR IRON 带铁芯电感
INDUCTOR3 可调电感
JFET N N沟道场效应管
JFET P P沟道场效应管
LAMP 灯泡
LAMP NEDN 起辉器
LED 发光二极管
METER 仪表
MICROPHONE 麦克风
MOSFET MOS管
MOTOR AC 交流电机
MOTOR SERVO 伺服电机
NAND 与非门
NOR 或非门
NOT 非门
NPN NPN三极管
NPN-PHOTO 感光三极管
OPAMP 运放
OR 或门
PHOTO 感光二极管
PNP 三极管
NPN DAR NPN三极管
PNP DAR PNP三极管
POT 滑线变阻器
PELAY-DPDT 双刀双掷继电器
RES12 电阻
RES34 可变电阻
RESISTOR BRIDGE 桥式电阻
RESPACK 电阻
SCR 晶闸管
PLUG 插头
PLUG AC FEMALE 三相交流插头
SOCKET 插座
SOURCE CURRENT 电流源
SOURCE VOLTAGE 电压源
SPEAKER 扬声器
SW 开关
SW-DPDY 双刀双掷开关
SW-SPST 单刀单掷开关
SW-PB 按钮
THERMISTOR 电热调节器
TRANS1 变压器
TRANS2 可调变压器
TRIAC 三端双向可控硅
TRIODE 三极真空管
VARISTOR 变阻器
ZENER 齐纳二极管
DPY_7-SEG_DP 数码管
SW-PB 开关
----------------------------------------------------------------------
PROTEUS原理图元器件库详细说明
Devicelib 包括电阻、电容、二极管、三极管和PCB的连接器符号
ACTIVELIB 包括虚拟仪器和有源器件
DIODELIB 包括二极管和整流桥
DISPLAYLIB 包括LCD、LED
BIPOLARLIB 包括三极管
FETLIB 包括场效应管
ASIMMDLSLIB 包括模拟元器件
VALVES LIB 包括电子管
ANALOGLIB 包括电源调节器、运放和数据采样IC
CAPACITORSLIB 包括电容
COMSLIB 包括 4000系列
ECLLIB 包括ECL10000系列
MICROLIB 包括 通用微处理器
OPAMPLIB 包括 运算放大器
RESISTORSLIB 包括 电阻
FAIRCHLD LIB 包括FAIRCHLD 半导体公司的分立器件
LINTECLIB 包括 LINTEC公司的运算放大器
NATDACLIB 包括 国家半导体公司的数字采样器件
NATOALIB 包括 国家半导体公司 的运算放大器
TECOORLIB 包括TECOOR公司的 SCR 和TRIAC
TEXOACLIB 包括 德州仪器公司的运算放大器和比较器
ZETEX LIB 包括ZETEX 公司的分立CPU型号大全总结(推荐)
编者按:任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU也不例外,本文让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中,我们主要叙述了目前两大CPU巨头——Intel和AMD的产品发展历程,对于其他的CPU公司,例如Cyrix和IDT等,因为其产品我们极少见到,篇幅所限我们就不再累述了。
一、X86时代的CPU
CPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。
4004处理器核心架构图
1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。
1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为477MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。
Intel 8086处理器
1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有134万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。
Intel 80286处理器
1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含275万个晶体管,时钟频率为125MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。1990年推出的80386 SL和80386 DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386 SL与80386 DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式(SMM)。当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。
Intel 80386处理器
1989年,我们大家耳熟能详的80486芯片由INTEL推出,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是80486DX。1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。80486 DX2由系用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通讯。80486 DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。80486 DX4也是采用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到16KB。80486 DX4的时钟频率为100MHz,其运行速度比66MHz的80486 DX2快40%。80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。
[Page: ]
二、奔腾时代的CPU
继承着80486大获成功的东风,赚翻了几倍资金的INTEL在1993年推出了全新一代的高性能处理器——奔腾。由于CPU市场的竞争越来越趋向于激烈化,INTEL觉得不能再让AMD和其他公司用同样的名字来抢自己的饭碗了,于是提出了商标注册,由于在美国的法律里面是不能用阿拉伯数字注册的,于是INTEL玩了哥花样,用拉丁文去注册商标。奔腾在拉丁文里面就是“五”的意思了。INTEL公司还替它起了一个相当好听的中文名字——奔腾。奔腾的厂家代号是P54C,奔腾的内部含有的晶体管数量高达310万个,时钟频率由最初推出的60MHZ和66MHZ,后提高到200MHZ。单单是最初版本的66MHZ的奔腾微处理器,它的运算性能比33MHZ的80486 DX就提高了3倍多,而100MHZ的奔腾则比33MHZ的80486 DX要快6至8倍。也就是从奔腾开始,我们大家有了超频这样一个用尽量少的钱换取尽量多的性能的好方法。作为世界上第一个586级处理器,奔腾也是第一个令人超频的最多的处理器,由于奔腾的制造工艺优良,所以整个系列的CPU的浮点性能也是各种各样性能是CPU中最强的,可超频性能最大,因此赢得了586级CPU的大部分市场。奔腾家族里面的频率有60/66/75//90/100/120/133/150/166/200,至于CPU的内部频率则是从60MHz到66MHz不等。值得一提的是,从奔腾75开始,CPU的插座技术正式从以前的Socket4转换到同时支持Socket 5和7同时支持,其中Socket 7还一直沿用至今。而且所有的奔腾 CPU里面都已经内置了16K的一级缓存,这样使它的处理性能更加强大。
Intel 奔腾处理器
与此同时,AMD公司也不甘示弱推出了K5系列的CPU。(AMD公司也改名字了!)它的频率一共有六种:75/90/100/120/133/166,内部总线的频率和奔腾差不多,都是60或者66MHz,虽然它在浮点 运算方面比不上奔腾,但是由于K5系列CPU都内置了24KB的一级缓存,比奔腾内置的16KB多出了一半,因此在整数运算和系统整体性能方面甚至要高于同频率的奔腾。即便如此,因为k5系列的 交付日期一再后拖,AMD公司在“586”级别的竞争中最终还是败给了INTEL。
1、初受挫折——奔腾 Pro:
初步占据了一部分CPU市场的INTEL并没有停下自己的脚步,在其他公司还在不断追赶自己的奔腾之际,又在1996年推出了最新一代的第六代X86系列CPU——P6。P6只是它的研究代号,上市之后P6有了一个非常响亮的名字——奔腾 Pro。Pentimu Pro的内部含有高达550万个的晶体管,内部时钟频率为133MHZ,处理速度几乎是100MHZ的奔腾的2倍。Pentimu Pro的一级(片内)缓存为8KB指令和8KB数据。
Intel奔腾 Pro处理器
[Page: ]
值得注意的是在Pentimu Pro的一个封装中除Pentimu Pro芯片外还包括有一个256KB的二级缓存芯片,两个芯片之间用高频宽的内部通讯总线互连,处理器与高速缓存的连接线路也被安置在该封装中,这样就使高速缓存能更容易地运行在更高的频率上。奔腾 Pro 200MHZCPU的L2 CACHE就是运行在200MHZ,也就是工作在与处理器相同的频率上。这样的设计领奔腾 Pro达到了最高的性能。 而Pentimu Pro最引人注目的地方是它具有一项称为“动态执行”的创新技术,这是继奔腾在超标量体系结构上实现实破之后的又一次飞跃。Pentimu Pro系列的工作频率是150/166/180/200,一级缓存都是16KB,而前三者都有256KB的二级缓存,至于频率为200的CPU还分为三种版本,不同就在于他们的内置的缓存分别是256KB,512KB,1MB。不过由于当时缓存技术还没有成熟,加上当时缓存芯片还非常昂贵,因此尽管Pentimu Pro性能不错,但远没有达到抛离对手的程度,加上价格十分昂贵,一次Pentimu Pro实际上出售的数目非常至少,市场生命也非常的短,Pentimu Pro可以说是Intel第一个失败的产品。
2、辉煌的开始——奔腾 MMX:
INTEL吸取了奔腾 Pro的教训,在1996年底推出了奔腾系列的改进版本,厂家代号P55C,也就是我们平常所说的奔腾 MMX(多能奔腾)。这款处理器并没有集成当时卖力不讨好的二级缓存,而是独辟蹊径,采用MMX技术去增强性能。
MMX技术是INTEL最新发明的一项多媒体增强指令集技术,它的英文全称可以翻译“多媒体扩展指令集”。MMX是Intel公司在1996年为增强奔腾 CPU在音像、图形和通信应用方面而采取的新技术,为CPU增加了57条MMX指令,除了指令集中增加MMX指令外,还将CPU芯片内的L1缓存由原来的16KB增加到32KB(16K指命+16K数据),因此MMX CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60%左右。MMX技术不但是一个创新,而且还开创了CPU开发的新纪元,后来的SSE,3D NOW!等指令集也是从MMX发展演变过来的。
Intel奔腾MMX处理器
在Intel推出奔腾 MMX的几个月后,AM也推出了自己研制的新产品K6。K6系列CPU一共有五种频率,分别是:166/200/ 233/266/300,五种型号都采用了66外频,但是后来推出的233/266/300已经可以通过升级主板的BIOS 而支持100外频,所以CPU的性能得到了一个飞跃。特别值得一提的是他们的一级缓存都提高到了64KB,比MMX足足多了一倍,因此它的商业性能甚至还优于奔腾 MMX,但由于缺少了多媒体扩展指令集这道杀手锏,K6在包括游戏在内的多媒体性能要逊于奔腾 MMX。
3、优势的确立——奔腾 Ⅱ:
1997年五月,INTEL又推出了和奔腾 Pro同一个级别的产品,也就是影响力最大的CPU——奔腾 Ⅱ。第一代奔腾 Ⅱ核心称为Klamath。作为奔腾Ⅱ的第一代芯片,它运行在66MHz总线上,主频分233、266、300、333Mhz四种,接着又推出100Mhz总线的奔腾 Ⅱ,频率有300、350、400、450Mhz。奔腾II采用了与奔腾 Pro相同的核心结构,从而继承了原有奔腾 Pro处理器优秀的32位性能,但它加快了段寄存器写 *** 作的速度,并增加了MMX指令集,以加速16位 *** 作系统的执行速度。由于配备了可重命名的段寄存器,因此奔腾Ⅱ可以猜测地执行写 *** 作,并允许使用旧段值的指令与使用新段值的指令同时存在。在奔腾Ⅱ里面,Intel一改过去BiCMOS制造工艺的笨拙且耗电量大的双极硬件,将750万个晶体管压缩到一个203平方毫米的印模上。奔腾Ⅱ只比奔腾 Pro大6平方毫米,但它却比奔腾 Pro多容纳了200万个晶体管。由于使用只有028微米的扇出门尺寸,因此加快了这些晶体管的速度,从而达到了X86前所未有的时钟速度。
Intel奔腾Ⅱ处理器
[Page: ]
在接口技术方面,为了击跨INTEL的竞争对手,以及获得更加大的内部总线带宽,奔腾Ⅱ首次采用了最新的solt1接口标准,它不再用陶瓷封装,而是采用了一块带金属外壳的印刷电路板,该印刷电路板不但集成了处理器部件,而且还包括32KB的一级缓存。如要将奔腾Ⅱ处理器与单边插接卡(也称SEC卡)相连,只需将该印刷电路板(PCB)直接卡在SEC卡上。SEC卡的塑料封装外壳称为单边插接卡盒,也称SEC(Single-edgecontactCartridge)卡盒,其上带有奔腾Ⅱ的标志和奔腾Ⅱ印模的彩色图像。在SEC卡盒中,处理器封装与L2高速缓存和TagRAM均被接在一个底座(即SEC卡)上,而该底座的一边(容纳处理器核心的那一边)安装有一个铝制散热片,另一边则用黑塑料封起来。奔腾ⅡCPU内部集合了32KB片内L1高速缓存(16K指令/16K数据);57条MMX指令;8个64位的MMX寄存器。750万个晶体管组成的核心部分,是以203平方毫米的工艺制造出来的。处理器被固定到一个很小的印刷电路板(PCB)上,对双向的SMP有很好的支持。至于L2高速缓存则有,512K,属于四路级联片外同步突发式SRAM高速缓存。这些高速缓存的运行速度相当于核心处理器速度的一半(对于一个266MHz的CPU来说,即为133MHz)。奔腾Ⅱ的这种SEC卡设计是插到Slot1(尺寸大约相当于一个ISA插槽那么大)中。所有的Slot1主板都有一个由两个塑料支架组成的固定机构。一个SEC卡可以从两个塑料支架之间滑入Slot1中。将该SEC卡插入到位后,就可以将一个散热槽附着到其铝制散热片上。266MHz的奔腾Ⅱ运行起来只比200MHz的奔腾Pro稍热一些(其功率分别为382瓦和379瓦),但是由于SEC卡的尺寸较大,奔腾Ⅱ的散热槽几乎相当于Socket7或Socket8处理器所用的散热槽的两倍那么大。
除了用于普通用途的奔腾Ⅱ之外,Intel还推出了用于服务器和高端工作站的Xeon系列处理器采用了Slot 2插口技术,32KB 一级高速缓存,512KB及1MB的二级高速缓存,双重独立总线结构,100MHz系统总线,支持多达8个CPU。
Intel奔腾Ⅱ Xeon处理器
为了对抗不可一世的奔腾 Ⅱ,在1998年中,AMD推出了K6-2处理器,它的核心电压是22伏特,所以发热量比较低,一级缓存是64KB,更为重要的是,为了抗衡Intel的MMX指令集,AMD也开发了自己的多媒体指令集,命名为3DNow!。3DNow!是一组共21条新指 令,可提高三维图形、多媒体、以及浮点运算密集的个人电脑应用程序的运算能力,使三维图形加速全面地发挥性能。K6-2的所有型号都内置了3DNow!指令集, 使AMD公司的产品首次在某些程序应用中,在整数性能以及浮点运算性能都同时超越INTEL,让INTEL感觉到了危机。不过和奔腾 Ⅱ相比,K6-2仍然没有集成二级缓存,因此尽管广受好评,但始终没有能在市场占有率上战胜奔腾Ⅱ。
4、廉价高性能CPU的开端——Celeron:
在以往,个人电脑都是一件相对奢侈的产品,作为电脑核心部件的CPU,价格几乎都以千元来计算,不过随着时代的发展,大批用户急需廉价而使用的家庭电脑,连带对廉价CPU的需求也急剧增长了。
在奔腾 Ⅱ又再次获得成功之际,INTEL的头脑开始有点发热,飘飘然了起来,将全部力量都集中在高端市场上,从而给AMD,CYRIX等等公司造成了不少 乘虚而入的机会,眼看着性能价格比不如对手的产品,而且低端市场一再被蚕食,INTEL不能眼看着自己的发家之地就这样落入他人手中,又与1998年全新推出了面向低端市场,性能价格比相当厉害的CPU——Celeron,赛扬处理器。
早期Slot 1插座 Celeron处理器
[Page: ]
Celeron可以说是Intel为抢占低端市场而专门推出的,当时1000美元以下PC的热销,令AMD等中小公司在与Intel的抗争中打了个漂亮的翻身仗,也令Intel如芒刺在背。于是,Intel把奔腾 II的二级缓存和相关电路抽离出来,再把塑料盒子也去掉,再改一个名字,这就是Celeron。中文名称为赛扬处理器。 最初的Celeron采用035微米工艺制造,外频为66MHz,主频有266与300两款。接着又出现了025微米制造工艺的Celeron333。
不过在开始阶段,Celeron并不很受欢迎,最为人所诟病的是其抽掉了芯片上的L2 Cache,自从在奔腾 Ⅱ尝到甜头以后,大家都知道了二级缓存的重要性,因而想到赛扬其实是一个被阉割了的产品,性能肯定不怎么样。实际应用中也证实了这种想法,Celeron266装在技嘉BX主板上,性能比PII266下降超过25%!而相差最大的就是经常须要用到二级缓存的程序。
Intel也很快了解到这个情况,于是随机应变,推出了集成128KB二级缓存的Celeron,起始频率为300Mhz,为了和没有集成二级缓存的同频Celeron区分,它被命名为Celeron 300A。有一定使用电脑历史的朋友可能都会对这款CPU记忆犹新,它集成的二级缓存容量只有128KB,但它和CPU频率同步,而奔腾 Ⅱ只是CPU频率一半,因此Celeron 300A的性能和同频奔腾 Ⅱ非常接近。更诱人的是,这款CPU的超频性能奇好,大部分都可以轻松达到450Mhz的频率,要知道当时频率最高的奔腾 Ⅱ也只是这个频率,而价格是Celeron 300A的好几倍。这个系列的Celeron出了很多款,最高频率一直到566MHz,才被采用奔腾Ⅲ结构的第二代Celeron所代替。
为了降低成本,从Celeron 300A开始,Celeron又重投Socket插座的怀抱,但它不是采用奔腾MMX的Socket7,而是采用了Socket370插座方式,通过370个针脚与主板相连。从此,Socket370成为Celeron的标准插座结构,直到现在频率12Ghz的Celeron CPU也仍然采用这种插座。
5、世纪末的辉煌——奔腾III:
在99年初,Intel发布了第三代的奔腾处理器——奔腾III,第一批的奔腾III 处理器采用了Katmai内核,主频有450和500Mhz两种,这个内核最大的特点是更新了名为SSE的多媒体指令集,这个指令集在MMX的基础上添加了70条新指令,以增强三维和浮点应用,并且可以兼容以前的所有MMX程序。
不过平心而论,Katmai内核的奔腾III除了上述的SSE指令集以外,吸引人的地方并不多,它仍然基本保留了奔腾II的架构,采用025微米工艺,100Mhz的外频,Slot1的架构,512KB的二级缓存(以CPU的半速运行)因而性能提高的幅度并不大。不过在奔腾III刚上市时却掀起了很大的热潮,曾经有人以上万元的高价去买第一批的奔腾III。
第一代Pentium III处理器 (Katmai)
[Page: ]
可以大幅提升,从500Mhz开始,一直到113Ghz,还有就是超频性能大幅提高,幅度可以达到50%以上。此外它的二级缓存也改为和CPU主频同步,但容量缩小为256KB。
第二代Pentium III处理器 (Coppermine)
除了制程带来的改进以外,部分Coppermine 奔腾III还具备了133Mhz的总线频率和Socket370的插座,为了区分它们,Intel在133Mhz总线的奔腾III型号后面加了个“B”, Socket370插座后面加了个“E”,例如频率为550Mhz,外频为133Mhz的Socket370 奔腾III就被称为550EB。
看到Coppermine核心的奔腾III大受欢迎,Intel开始着手把Celeron处理器也转用了这个核心,在2000年中,推出了Coppermine128核心的Celeron处理器,俗称Celeron2,由于转用了018的工艺,Celeron的超频性能又得到了一次飞跃,超频幅度可以达到100%。
第二代Celeron(Coppermine128核心)处理器
6、AMD的绝地反击——Athlon
在AMD公司方面,刚开始时为了对抗奔腾III,曾经推出了K6-3处理器。K6-3处理器是三层高速缓存(TriLevel)结构设计,内建有64K的第一级高速缓存(Level 1)及256K的第二层高速缓存(Level 2),主板上则配置第三级高速缓存(Level 3)。K6-3处理器还支持增强型的3D Now!指令集。由于成本上和成品率方面的问题,K6-3处理器在台式机市场上并不是很成功,因此它逐渐从台式机市场消失,转进笔记本市场。
真正让AMD扬眉吐气的是原来代号K7的Athlon处理器。Athlon具备超标量、超管线、多流水线的Risc核心(3Way SuperScalar Risc core),采用025微米工艺,集成2,200万个晶体管,Athlon包含了三个解码器,三个整数执行单元(IEU),三个地址生成单元(AGU),三个多媒体单元(就是浮点运算单元),Athlon可以在同一个时钟周期同时执行三条浮点指令,每个浮点单元都是一个完全的管道。K7包含3个解码器,由解码器将解码后的macroOPS指令(K7把X86指令解码成macroOPS指令,把长短不一的X86指令转换成长短一致的macroOPS指令,可以充分发挥RISC核心的威力)送给指令控制单元,指令控制单元能同时控制(保存)72条指令。再把指令送给整数单元或多媒体单元。整数单元可以同时调度18条指令。每个整数单元都是一个独立的管道,调度单元可以对指令进行分支预测,可以乱序执行。K7的多媒体单元(也叫浮点单元)有可以重命名的堆栈寄存器,浮点调度单元同时可以调度36条指令,浮点寄存器可以保存88条指令。在三个浮点单元中,有一个加法器,一个乘法器,这两个单元可以执行MMX指令和3DNow指令。还有一个浮点单元负责数据的装载和保存。由于K7强大的浮点单元,使AMD处理器在浮点上首次超过了Intel当时的处理器。
Athlon内建128KB全速高速缓存(L1 Cache),芯片外部则是1/2时频率、512KB容量的二级高速缓存(L2 Cache),最多可支持到8MB的L2 Cache,大的缓存可进一步提高服务器系统所需要的庞大数据吞吐量。
Athlon的封装和外观跟Pentium Ⅱ相似,但Athlon采用的是Slot A接口规格。Slot A接口源于Alpha EV6总线,时钟频率高达200MHz,使峰值带宽达到16GB/S,在内存总线上仍然兼容传统的100MHz总线,现这样就保护了用户的投资,也降低了成本。后来还采用性能更高的DDR SDRAM,这和Intel力推的800MHz RAMBUS的数据吞吐量差不多。EV6总线最高可以支持到400MHz,可以完善的支持多处理器。所以具有天生的优势,要知道Slot1只支持双处理器而SlotA可支持4处理器。SlotA外观看起来跟传统的Slot1插槽很像,就像Slot1插槽倒转180度一样,但两者在电气规格、总线协议是完全不兼容的。Slot 1/Socket370的CPU,是无法安装到Slot A插槽的Athlon主板上,反之亦然。
[Page: ]
三、踏入新世纪的CPU
进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium Ⅱ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。
1、在Intel方面,在上个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是我们天天都能接触到的Pentium 4。Pentium 4没有沿用PIII的架构,而是采用了全新的设计,包括等效于的400MHz前端总线(100 x 4), SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为13GHz。
第一个Pentium4核心为Willamette,全新的Socket 423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆续推出了14GHz-20GHz的Willamette P4处理器,而后期的P4处理器均转到了针角更多的Socket 478插座。
第一代的Pentium4(Socket423)处理器
和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。但在一年以后,Intel发布了第二个Pentium4核心,代号为Northwood,改用了更为精细的013微米制程,集成了更大的512KB二级缓存,性能有了大幅的提高,加上Intel孜孜不倦的推广和主板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。
第二代的Pentium4(Socket478)处理器
在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了013微米的工艺,与此同时二级缓存的容量提高到256KB,外频也提高到100Mhz,目前Tualatin Celeron的主频有10、11、12、13Ghz等型号。Intel也推出了Tualatin核心的奔腾III,集成了更大的512KB二级缓存,但它们只应用于服务器和笔记本电脑市场,在台式机市场很少能看到。
第三代Tualatin核心的Celeron处理器
2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工艺改进为018微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。最后是二级缓存改为256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。
Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程碑就是由这款CPU首先达到的。不过随着Pentium4的发布,Tunderbird开始在频率上落后于对手,为此,AMD又发布了第三个Athlon核心——Palomino,并且采用了新的频率标称制度,从此Athlon型号上的数字并不代表实际频率,而是根据一个公式换算相当于竞争对手(也就是Intel)产品性能的频率,名字也改为AthlonXP。例如AthlonXP1500+处理器实际频率并不是15Ghz,而一、软件
1.病毒破坏
比较典型的就是前一段时间对全球计算机造成严重破坏的“冲击波”病毒,发作时还会提示系统将在60秒后自动启动。其实,早在DOS时代就有不少病毒能够自动重启你的计算机。
对于是否属于病毒破坏,我们可以使用最新版的杀毒软件进行杀毒,一般都会发现病毒存在。当然,还有一种可能是当你上网时被人恶意侵入了你的计算机,并放置了木马程序。这样对方能够从远程控制你计算机的一切活动,当然也包括让你的计算机重新启动。对于有些木马,不容易清除,最好重新安装 *** 作系统。
2.系统文件损坏
当系统文件被破坏时,如Win2K下的KERNEL32DLL,Win98 FONTS目录下面的字体等系统运行时基本的文件被破坏,系统在启动时会因此无法完成初始化而强迫重新启动。你可以做个试验,把WIN98目录下的字库“FONTS”改名试一试。当你再次开机时,我们的计算机就会不断的重复启动。
对于这种故障,因为无法进入正常的桌面,只能覆盖安装或重新安装。
3.定时软件或计划任务软件起作用
如果你在“计划任务栏”里设置了重新启动或加载某些工作程序时,当定时时刻到来时,计算机也会再次启动。对于这种情况,我们可以打开“启动”项,检查里面有没有自己不熟悉的执行文件或其他定时工作程序,将其屏蔽后再开机检查。当然,我们也可以在“运行”里面直接输入“Msconfig”命令选择启动项。
二、硬件
1.市电电压不稳
一般家用计算机的开关电源工作电压范围为170V-240V,当市电电压低于170V时,计算机就会自动重启或关机。因为市电电压的波动我们有时感觉不到,所以就会误认为计算机莫名其妙的自动重启了。
解决方法:对于经常性供电不稳的地区,我们可以购置UPS电源或130-260V的宽幅开关电源来保证计算机稳定工作。
2.插排或电源插座的质量差,接触不良
市面上的电源插排多数质量不好,内部的接点都是采用手工焊接,并且常采用酸性助焊剂,这样容易导致在以后的使用中焊点氧化引起断路或者火线和零线之间漏电。因为手工焊接,同时因为采用的磷黄铜片d性差,用不了多长时间就容易失去d性,致使与主机或显示器的电源插头接触不良而产生较大的接触电阻,在长时间工作时就会大量发热而导致虚接,这时就会表现为主机重新启动或显示器黑屏闪烁。
还有一个可能是我们家里使用的墙壁插座,多数墙壁插座的安装都不是使用专业人员,所以插座内部的接线非常的不标准,特别这些插座如果我们经常使用大功率的电暖器时就很容易导致内部发热氧化虚接而形成间歇性的断电,引起计算机重启或显示器眨眼现象。
解决方法:
① 不要图省钱而购买价廉不物美的电源排插,购买一些名牌的电源插排,因为其内部都是机器自动安装压接的,没有采用手工焊接。
② 对于是否属于墙壁插座内部虚接的问题,我们可以把主机换一个墙壁插座试一试,看是否存在同样的自动重启问题。
3.计算机电源的功率不足或性能差
这种情况也比较常见,特别是当我们为自己主机增添了新的设备后,如更换了高档的显卡,增加了刻录机,添加了硬盘后,就很容易出现。当主机全速工作,比如运行大型的3D游戏,进行高速刻录或准备读取光盘,刚刚启动时,双硬盘对拷数据,就可能会因为瞬时电源功率不足而引起电源保护而停止输出,但由于当电源停止输出后,负载减轻,这时电源再次启动。因为保护后的恢复时间很短,所以给我们的表现就是主机自动重启。
还有一种情况,是主机开关电源性能差,虽然电压是稳定的也在正常允许范围之内,但因为其输出电源中谐波含量过大,也会导致主机经常性的死机或重启。对于这种情况我们使用万用表测试其电压时是正常的,最好更换一台优良的电源进行替换排除。
解决方法:现换高质量大功率计算机电源。
4.主机开关电源的市电插头松动,接触不良,没有插紧
这种情况,多数都会出现在DIY机器上,主机电源所配的电源线没有经过3C认证,与电源插座不配套。当我们晃动桌子或触摸主机时就会出现主机自动重启,一般还会伴有轻微的电打火的“啪啪”声。
解决方法:更换优质的3C认证电源线。
5.主板的电源ATX20插座有虚焊,接触不良
这种故障不常见,但的确存在,主要是在主机正常工作时,左右移动ATX20针插头,看主机是否会自动重启。同时还要检查20针的电源插头内部的簧片是否有氧化现象,这也很容易导致接触电阻大,接触不良,引起主机死机或重启。有时还需要检查20针插头尾部的连接线,是否都牢靠。
解决方法:
① 如果是主板焊点虚焊,直接用电烙铁补焊就可以了。注意:在对主板、硬盘、显卡等计算机板卡焊接时,一定要将电烙铁良好接地,或者在焊接时拔下电源插头。
② 如果是电源的问题,最好是更换一台好的电源。
6.CPU问题
CPU内部部分功能电路损坏,二级缓存损坏时,计算机也能启动,甚至还会进入正常的桌面进行正常 *** 作,但当进行某一特殊功能时就会重启或死机,如画表,播放VCD,玩游戏等。
解决办法:试着在CMOS中屏蔽二级缓存(L2)或一级缓存(L1),看主机是否能够正常运行;再不就是直接用好的CPU进行替换排除。如果屏蔽后能够正常运行,还是可以凑合着使用,虽然速度慢些,但必竟省钱了。
7.内存问题
内存条上如果某个芯片不完全损坏时,很有可能会通过自检(必竟多数都设置了POST),但是在运行时就会因为内存发热量大而导致功能失效而意外重启。多数时候内存损坏时开机会报警,但内存损坏后不报警,不加电的故障都还是有的。最好使用排除法,能够快速确定故障部位。
8.光驱问题
如果光驱内部损坏时,也会导致主机启动缓慢或不能通过自检,也可能是在工作过程中突然重启。对于后一种情况如果是我们更换了光驱后出现的,很有可能是光驱的耗电量不同而引起的。大家需要了解的是,虽然光驱的ATPI接口相同,但不同生产厂家其引脚定义是不相同的,如果我们的硬盘线有问题时,就可能产生对某一牌子光驱使用没有问题,但对其他牌子光驱就无法工作的情况,这需要大家注意。
9.RESET键质量有问题
如果RESET开关损坏,内部簧片始终处于短接的位置时,主机就无法加电自检。但是当RESET开关d性减弱或机箱上的按钮按下去不易d起时,就会出现在使用过程中,因为偶尔的触碰机箱或者在正常使用状态下而主机突然重启。所以,当RESET开关不能按动自如时,我们一定要仔细检查,最好更换新的RESET按钮开关或对机箱的外部按钮进行加油润滑处理。
还有一种情况,是因为机箱内的RESET开关引线在焊接时绝缘层剥离过多,再加上使用过程中多次拆箱就会造成RESET开关线距离过近而引起碰撞,导致主机自动重启。
10.接入网卡或并口、串口、USB接口接入外部设备时自动重启
这种情况一般是因为外设有故障,比如打印机的并口损坏,某一脚对地短路,US
电脑自动重启死机慢无法打开文件(软件引起的故障)线性调频,用于CPU
2003年3月英特尔正式发布了迅驰移动计算技术,英特尔的迅驰移动计算技术并非以往的处理器、芯片组等单一产品形式,其代表了一整套移动计算解决方案,迅驰的构成分为三个部分:奔腾M处理器、855/915系列芯片组和英特尔PRO无线网上,三项缺一不可共同组成了迅驰移动计算技术。
奔腾M首次改版叫Dothan
在两年多时间里,迅驰技术经历了一次改版和一次换代。初期迅驰中奔腾M处理器的核心代号为Bannis,采用130纳米工艺,1MB高速二级缓存,400MHz前端总线。迅驰首次改版是在2004年5月,采用90纳米工艺Dothan核心的奔腾M处理器出现,其二级缓存容量提供到2MB,前端总线仍为400MHz,它也就是我们常说的Dothan迅驰。首次改版后,Dothan核心的奔腾M处理器迅速占领市场,Bannis核心产品逐渐退出主流。虽然市场中流行着将Dothan核心称之为迅驰二代,但英特尔官方并没有给出明确的定义,仍然叫做迅驰。也就是在Dothan奔腾M推出的同时,英特尔更改了以主频定义处理器编号的惯例,取而代之的是一系列数字,例如:奔腾M 715/725等,它们分别对应15GHz和16GHz主频。首次改版中,原80211b无线网卡也改为了支持80211b/g规范,网络传输从11Mbps提供至14Mbps
新一代迅驰Sonoma
迅驰的换代是2005年1月19日,英特尔正式发布基于Sonoma平台的新一代迅驰移动计算技术,其构成组件中,奔腾M处理器升级为Dothan核心、90纳米工艺、533MHz前端总线和2MB高速二级缓存,处理器编号由奔腾M 730—770,主频由160GHz起,最高213GHz。915GM/PM芯片组让迅驰进入了PCI-E时代,其中915GM整合了英特尔GMA900图形引擎,让非独立显卡笔记本在多媒体性能上有了较大提高。915PM/GM还支持单通道DDR333或双通道DDR2 400/533MHz内存,性能提供同时也降低了部分功耗。目前Sonoma平台的新一代迅驰渐渐成为市场主流。
迅驰二代
全新英特尔迅驰移动计算技术平台(代号为Sonoma),该平台由90nm制程的Dothan核心(2MB L2缓存,533MHz FSB)的PentiumM处理器、全新Aviso芯片组、新的无线模组Calexico2(英特尔PRO/无线2915ABG或2200BG无线局域网组件)三个主要部件组成。
增加的新技术:全新英特尔图形媒体加速900显卡内核、节能型533MHz前端总线、以及双通道DDR2内存支持,有助于采用配备集成显卡的移动式英特尔915GM高速芯片组的系统,获得双倍的显卡性能提升。此外,全新英特尔迅驰移动计算技术还支持最新PCI Express图形接口,可为采用独立显卡的高端系统提供最高达4倍的图形带宽。在系统制造商的支持下,还可获得诸如电视调谐器、支持Dolby Digital和71环绕声的英特尔高清晰度音频、个人录像机和遥控等选件,同时继续享有英特尔迅驰移动技术计算具备的耐久电池使用时间优势。可帮助制造商实现耐久电池使用时间的特性包括:显示节能技术20、低功耗DDR2内存支持、以及增强型英特尔SpeedStep技术等。
1全新的PentiumM处理器:Dothan处理器在Banias的基础上引入了较为成熟的NetBurst构架中的诸多特点,并增加了Enhanced Data Prefecher(高级数据预取)和Enhanced Register Data Retrieval(高级记录数据重获)两项新技术。
同Banias内核产品相比,Dothan处理器主要有三个方面的变化。首先生产工艺从013微米提升到了全新的90纳米,可制造出更小更快的晶体管,因此Dothan处理器在比Banias增加了一倍Cache的情况下,体积和耗电基本保持不变。其次Dothan采用了新的“应变硅”材料技术。据Intel测试,应变硅中的电子流动速度比当前的其他硅材料的电子快很多,使Dothan的主频得到了较大提升,目前最高已达到了213G。此外Dothan二级缓存提升到2MB,在保持能耗大致相同的情况下,相对于原先的同频Banias Pentium-M处理器性能提升了20%左右。Dothan CPU从多方面来达到节能降耗的目的,其二级缓存采用了8路联合的运行模式,而每路又被分割成为4个功耗区域,由于在处理器工作过程中同一时间只能使用其中的一个功耗区域,所以在专用的堆栈管理技术控制下关闭当前不能被使用到的功耗区域,从而大大降低了二级缓存的功耗。除此之外,Dothan CPU支持新的Enhanced SpeedStep节能技术,这一技术完全由处理器的电压调整机制来完成,而与芯片组关系不大。在这些模式间切换的 *** 作,全部是自动的,完全根据处理器当时的负荷,这样就会使能耗情况得到精确的控制,达到更加节能的目的。
2全新Aviso芯片组:Sonoma平台的核心除了Dothan CPU,更关键是Alviso(915PM/915GM)芯片组,包含了很多最新的技术,除了支持PCI Express总线架构,还包括支持低功耗的DDR-2内存以及全新的EG3图形核心,此外,Alviso芯片组还搭配代号为ICH6-M的移动南桥芯片,可以提供四个串行ATA硬盘接口,并整合了新一代Azalia音效芯片与全新的ExpressCard外部扩展接口。“Sonoma”作为“迅驰(Centrino)”的替代产品,其无线、显示及音频功能得到了进一步完善,计算速度也提高了30%左右。
PCI Express总线在Alviso芯片组上将会全面取代AGP总线和PCI总线。这是最让人欣喜的进步,以后不必再为数据传输的瓶颈而感到困扰了。带宽的巨大提升对于视频处理、多媒体制作带来不容忽视的作用。 PCI Express总线还同时具备了低功耗的特点,对于笔记本来说也是相当关键的。同时新系统还将搭配高性能、低功耗的DDRII内存,且支持双通道,将能提供最大84G/s的带宽,这样能满足以后很长一段时间处理器的发展需求,同时对集成显卡性能的提升也大有好处。伴随Sonoma平台,Intel将会推出“Extreme Graphics 3”整合显示芯片,硬件支持PS 20和VS 20以及DirectX 9,同时还使用了特殊的电源管理技术以降低功耗,能让用户在性能与功耗之间进行自由的选择。而新的显存整合封装模式,把显示核心与显存做在了同一块基板上,这样做的好处就是可以提高显存同核心之间的数据交换速度,并有效减小体积。
在Sonoma移动平台上所集成的“Azalia”音效技术,最大优势就是具备出色的性能,即并行处理功能和标准化架构。Azalia技术最高支持32bit/192kHz的音频采样率,和71声道输出。此外,Azalia会使用统一总线驱动进行控制,因为任何Azalia音频设备都可以使用相同的驱动。Azalia音效技术将会为笔记本电脑带来前所未有的音频效果,配合性能越来越强劲移动显示技术,将使得用笔记本玩游戏成为一种享受。
在Sonoma移动平台上,延用了多年的PCMCIA Card也会有很大的变化。随着高带宽的视频和网络应用的普及,传统PCMCIA PC Card越来越不适应这样的形势了。迫切需要有一种新型的技术来替代。ExpressCard就是这样的技术,将比传统的PC Card技术更轻、更薄、更快、更易用。除了针对笔记本电脑的ExpressCard34以外,还有针对桌面电脑的ExpressCard54,从而在笔记本和台式机之间架起又一座桥梁。由于ExpressCard在外形尺寸、性能、可靠性、适应性、热插拔和自动设置等多种特性之间达到了更理想的平衡,因此很有可能取代沿用多年的PC Card。
3新的无线模组Calexico2:移动计算一个最重要的发展趋势就是大规模推广无线局域网(Wi-Fi)的应用。对无线连接的支持 Intel 迅驰技术的核心内容之一。不过相比较Dothan处理器和Alviso芯片组而言,Calexico2无线模块的技术创新程度明显不足,因为同样的技术实际上早在两年前就有独立的产品出现,Intel只是将其整合进Sonoma移动平台中,并将其命名为Calexico2 而已。
在Sonoma移动平台上,作为迅驰技术重要部分的无线通讯模块,将配置最新的Calexico2无线通讯模块,在支持IEEE 80211b的基础之上添加了对IEEE 80211a/g两项无线技术的支持。其中IEEE80211a工作在50GHz频段下,可以轻松避免来自24GHz频段的干扰。除了频段不同以外,IEEE 80211a采用了改进的信息编码方式,这样使得传输速度可以达到54Mbps。而IEEE 80211g技术既具有IEEE 80211a的特征,也具有IEEE 80211b的特征。IEEE 80211g工作在24GHz频段下,这样便实现了与IEEE 80211b兼容的目的,但是IEEE 80211g采用了与IEEE 80211a相同的信息编码方式,同样使得传输频率达到54Mbps。
迅驰三代
Napa是Intel第三代移动技术平台的名称,它由Intel 945系列芯片组、Yonah Pentium M处理器、Intel 3945ABG无线网卡模块组成的整合平台,相对于第二代迅驰Sonoma平台最大的技术提升有,系统总线速率提升到667MHz,Yonah处理器推出单、双核技术并且采用65nm制程,IntelPro/Wireless 3945ABG无线模块则开始兼容80211a/b/g三种网络环境。其中,Yonah Pentium M处理器开始引入双核技术,是这次Napa的一项重点技术。
Yonah Pentium M处理器
在Napa平台里面,最为瞩目的莫过于采用了双核技术的Yonah Pentium M处理器, Yonah Pentium M处理器是采用65nm制程新一代移动处理器,不过仍然采用Socket 479针脚。它除了引入双核技术以外,同时前端总线速率提升至667MHz,因为双核心的存在而使用的SmartCache技术、新一代电源管理技术,以及开始支持SEE3多媒体指令集。
Yonah Pentium M双核是Intel第一款在移动处理器产品里面引入双核技术的产品,它在一个处理器里面植入了两个核心单元,通过SmartCache技术共享2M L2二级缓存,根据处理任务的负荷程度,在两个核心处理单元之间进行协调,然后分别同时进行指令运算,从而达到更高效的处理能力。双核技术所解决的是,并发多任务运行时整体的性能。
虽然Yonah双核Pentium M有两个核心,但是缓存是通过SmartCache技术来共享使用2M L2缓存,而并没有为两个核心单独设计二级缓存,因此总线速率同时提高至667MHz会相应减少处理器与芯片组之间通信存在瓶颈的可能性。
双核心技术的引入,虽然性能方面获得了绝对的提升,同时也提高了多任务并发运行的处理效率,但是作移动处理器产品来说,功耗有没有得到相应的控制也是用户最为关心的方面。Yonah Pentium M处理器的产品线当中,单核Yonah处理器的功耗还是与Dothan处理器一样,而双核Yonah普通版的最大运行功率达到了31W,超低电压双核Yonah Pentium M只有9W,低电压单核15W,普通一般单核为27W,单核Yonah处理器的功耗比相应Dothan处理器保持同样的水平,而双核版的Yonah处理器的功耗则有所提升,因此Intel引入了名为Intel Dynamic Power Coordination技术、Enhanced Intel Deeper Sleep节能技术,来使Napa平台可以更合理的根据用户的应用来调整功耗,结合Intel SPeedstep自动调频技术,Napa平台在整体功耗方面会相应到改善。
Intel Digital Media Boost也是Yonah处理器引入的一个新技术,其主要就是在SSE/SSE2 Micro Ops Fusion、SSE解码器容量提高以及对SSE3指令集的支持,这一技术的引入,会增加Yonah处理器在多媒体应用方面的性能,对于家庭用户来说,其娱乐性会得到改善,比如在视频剪辑、视频播放等应用上,性能以及效果都会得到提高。
2Intel 945芯片组系列
Calistoga是移动Intel 945系列芯片组的代号,相比于Intel 915系列芯片组,Calistoga芯片组提供了系统总线至667MHz,支持DDR2双通道内存,最高速率支持667MHz(PC5300),支持PCI-Express x16接口技术,Intel 945GM集成Intel Graphics Media Accelerator 950显示单元,400MHz显示核心,并且提升共享系统DDR2 667MHz内存为显存。
Intel 945北桥相应地搭配ICH7-M南桥,支持6个PCI-Express x1接口,同时也支持PCI接口,SATA-300硬盘接口,最高支持3Gbps传输速率。另外,同样支持HD Audio音频技术。
3Intel Pro/Wireless 3945ABG无线模块
Napa将使用Intel Pro/Wireless 3945ABG无线模块,它支持IEEE 80211a/b/g无线网络协议,并且在Napa中将一改在Sonoma以及之前的Carmel平台使用的PCI接口,开始使用PCI-Express x1接口,并且模块的规格也转为一种更小的迷你卡。
基于PCI-Express x1接口的WiFi迷你卡无疑最大的好处可以为机器节约一些资源,符合笔记本电脑机体尺寸向更便携的方向发展,不过就目前来看,也有部分Napa平台的工程样机仍然采用基于PCI接口的Intel 2200BG无线模块,因此在未来Napa产品中,这两种无线模块会同时存在,需要一个过渡期来完成两代无线模块的交接。
兼容80211a/b/g三种无线网络协议,可以使Napa有更为广泛的应用领域,就随着迅驰技术发展起来的无线网络市场来看,目前普遍的还是兼容80211b/g双模无线环境,而抗干扰能力更强的80211a无线环境多用于一些特殊领域。
迅驰四代
Intel在5月9日发布了最新的第四代迅驰移动平台Santa Rosa,最新的Santa Rosa平台相比之前的迅驰平台来说,最大的优势在于其更好的多任务处理能力,清晰的视频播放能力,更好的可管理性和安全性,而这些使的intel移动平台的优势进一步扩大
1处理器:
新的Merom核心处理器同样采用酷睿微架构,具有高能低耗的特性。新处理器将前端总线频率从667 MHz提高到800MHz,使CPU和芯片组之间数据传输速度提高。
此外新处理器在节省能耗方面又做了进一步的优化,采用动态前端总线频率切换技术,通过实时改变前端总线频率将降低内核电压,使CPU进入新的被称为超级LFM的低功率运行状态, 降低运行功耗。动态前端总线切换的技术加入后,在低功耗运行状态延长电池续航时间。增加了新的更低电压运行状态,通过降低CPU内核电压和总线速度带来额外的功耗节省,CPU和芯片组根据总线时钟频率的改变而进入低电压运行状态。两个核心处于HFM(高频率模式)、P3、P2、P1、LFM(低频率模式)、Super LFM(超级低频模式),新增加的模式能够更多的降低功耗。
新处理器还引入了Intel动态加速技术,使单线程应用性能提升。通俗的讲就是当CPU处于单线程工作状态下,使处理器的一个内核处于C3状态(空闲状态的一个状态)来降低功耗,而另一个运行的内核则可以从空闲的内核获得额外的TDP空间,从而达到更高的性能。
2 芯片组:
Santa Rosa平台采用最新的965系列芯片组,搭配ICH8M南桥,支持800MHz/667MHz前端总线的Merom双核处理器、双通道DDR2 667MHz/533MHz内存、SATA 30Gbps磁盘数据传输带宽,支持英特尔快速数据恢复技术、英特尔主动管理技术、英特尔清晰视频技术,比起上代使用的945系列来说提升了不少。
ICH8M南桥使用了25版主动管理技术,控制链路实现管理引擎支持多个接口通讯,包括无线网以及以太网。ICH8M拥有10个USB 20接口,3个SATA 30Gbps端口,6个PCI-Express x1接口。
北桥整合了GMA X3100图形核心,拥有INTEL清晰视频技术,并提供MPEG2/WMV9硬件加速。高品质的视频播放,硬件高清视频解码加速,这对于增加平台的体验非常重要。支持DX9图形渲染,拥有8个shader单元,较上一代图形核心能力大幅增强,X3100拥有硬件顶点单元,可以说是一个比较完善的图形处理器了。X3100能够支持Vista Premium,提供完整的Vista效果。图形核心的工作频率为500MHz,拥有新一代节能功能,可以使用INTEL DVMT 40增加显存。
其中Intel 965系列芯片组包含PM965、GM965和GL960三款。PM965是不集成图形显示核心的版本,GM965集成X3100图形显示核心,核心频率达500MHz,支持DirectX90c和OpenGL15,还可以完美支持Vista Premium和Aero图形界面。GL960则是GM965的简化版本,不仅图形显示核心的频率降低到了320MHz,前端总线也仅支持533MHz。
3无线网卡:
Santa Rosa平台配备Intel Pro/Wireless 4965AGN无线网卡,除了80211a/b/g标准,还可以支持最新的80211n标准。80211n采用三种技术使得性能更出色且覆盖范围更广,首先是MIMO,也就是多入多出技术,它采用多天线同时收发多个无线信道提升数据传输率,此外MIMO还能有效缓解多径效应,多径效应是影响无线网性能的主要原因。第二种方式是使用信道捆绑,将两个20MHz信道捆绑用于传输双倍数据。第三种方式是负载优化,可以实现每次传输更多的数据。
目前参与了Intel Santa Rosa平台建设的网络设备厂商包括友讯(D-Link)、美国网件(NetGear)、巴比禄(Buffalo)、华硕(ASUS)和贝尔金(Belken)。目前使用这几家无线网卡的笔记本可以贴上迅驰标签,但我们也注意到新的Santa Rosa平台并没有强制要求使用4965AGN无线网卡,所以使用上代无线网卡也可以贴上迅驰标志,不过这样对普通消费者来说又增加了购买难度,购买时只能更瞪大双眼检查了。
双核(Dual Core)技术是指把两颗或两颗以上处理器的核心直接做到同一颗处理器上,以多颗处理器核心协同运算来提高执行效率。与服务器领域普遍应用的多处理器级联技术相比,Dual/Multi Core技术的好处是可以令通信电路变短,达到更低的延迟值,降低整体的生产成本
现最佳的整体性能。毋庸置疑。
酷睿2
为您的台式机和笔记本电脑配备英特尔® 酷睿™2 双核处理器,您将获得众多最新的性能卓越的技术,包括多达 4MB 的共享 L2 缓存、高达 1333 MHz 的台式机前端总线以及高达 800 MHz 的笔记本电脑前端总线。即刻拥有超前的计算性能,一切尽在英特尔:
英特尔® 多路(Wide)动态执行,每时钟周期可传递更多的指令,从而节省执行时间并提高电源使用效率。
英特尔® 智能功效管理,旨在为笔记本电脑提供更高的节能效果及更卓越的电池使用效率。
英特尔® 智能内存访问,通过优化可用数据带宽的使用率来提高系统性能
英特尔® 高级智能高速缓存,提供性能更强效率更高的缓存子系统。专为多核处理器和双核处理器做了优化。
英特尔® 高级数字多媒体增强技术,扩大应用范围,包括视频、语音和图像、照片处理、加密、金融、工程和科学等应用领域
其他台式机性能
无与伦比的性能、更显著的节能效果¹。小型包装现已面世。
内含英特尔® 酷睿™2 双核处理器的台式机专门针对降低功耗进行全面设计, 让您体验卓越性能、超静音和低功耗带来的诸多惊喜的同时,还享受时尚炫酷的台式机造型设计。
任意执行多项任务。
可以同时执行多项任务,让您一举夺得、事半功倍,例如一边播放您喜爱的音乐、一边在后台运行病毒扫描程序,同时还能编辑视频或。用于台式机的功能强大的英特尔® 酷睿™2 双核处理器,可以为您提供执行单一或轻松驾驭所有可能任务所需的速度。
再次打造爱不释手的个人电脑。
追求卓越品质,永不妥协。选择采用英特尔® 酷睿™2 双核处理器的完美的台式机,享受世界最佳的处理技术。一切尽在英特尔。
发现、修复、并保护您的企业资产。
基于英特尔® 的最佳商用台式机以其基于硬件的主动安全和增强型维护和管理技术将 IT 安全和管理推向一个新的高度,同时,其卓越的性能和出色的能效为 Microsoft Windows Vista 提供了最佳的平台基础。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)