arm平台下linux驱动。。想制作一个键盘驱动,接口为iic,能够捕获iic值产生相应的键盘事件

arm平台下linux驱动。。想制作一个键盘驱动,接口为iic,能够捕获iic值产生相应的键盘事件,第1张

IIC规范
IIC(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。IIC总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。
21 IIC总线的特点
IIC总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此IIC总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。IIC总线的另一个优点是,它支持多主控(multimastering), 其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。
22 IIC总线工作原理
221 总线构成及信号类型
IIC总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,IIC总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。
CPU发出的控制信号分为地址码和控制量两部分:
地址码用来选址,即接通需要控制的电路,确定控制的种类;
控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。
这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。
IIC总线在传送数据过程中共有三种类型信号:
开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。
数据传输信号:在开始条件以后,时钟信号SCL的高电平周期期问,当数据线稳定时,数据线SDA的状态表示数据有效,即数据可以被读走,开始进行读 *** 作。在时钟信号SCL的低电平周期期间,数据线上数据才允许改变。每位数据需要一个时钟脉冲。
应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。
目前有很多半导体集成电路上都集成了IIC接口。带有IIC接口的单片机有:CYGNAL的 C8051F0XX系列,PHILIPSP87LPC7XX系列,MICROCHIP的PIC16C6XX系列等。很多外围器件如存储器、监控芯片等也提供IIC接口。
23 总线基本 *** 作
IIC规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件都可以工作于接收和发送状态。 总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。SDA线上的数据状态仅在SCL为低电平的期间才能改变,SCL为高电平的期间,SDA状态的改变被用来表示起始和停止条件。
231 控制字节
在起始条件之后,必须是器件的控制字节,其中高四位为器件类型识别符(不同的芯片类型有不同的定义,EEPROM一般应为1010),接着三位为片选,最后一位为读写位,当为1时为读 *** 作,为0时为写 *** 作。
232 写 *** 作
写 *** 作分为字节写和页面写两种 *** 作,对于页面写根据芯片的一次装载的字节不同有所不同。关于页面写的地址、应答和数据传送的时序。
233 读 *** 作
读 *** 作有三种基本 *** 作:当前地址读、随机读和顺序读。图4给出的是顺序读的时序图。应当注意的是:最后一个读 *** 作的第9个时钟周期不是“不关心”。为了结束读 *** 作,主机必须在第9个周期间发出停止条件或者在第9个时钟周期内保持SDA为高电平、然后发出停止条件。
234 总线仲裁
主机只能在总线空闲的时候启动传输。两个或多个主机可能在起始条件的最小持续内产生一个起始条件,结果在总线上产生一个规定的起始条件。
当SCL线是高电平时,仲裁在SDA线发生:这样,在其他主机发送低电平时,发送高电平的主机将断开它的数据输出级,因为总线上的电平和它自己的电平不同。
仲裁可以持续多位。从地址位开始,同一个器件的话接着就是数据位(如果主机-发送器),或者比较相应位(如果主机-接收器)。IIC总线的地址和数据信息由赢得仲裁的主机决定,在这个过程中不会丢失信息。
仲裁不能在下面情况之间进行:
重复起始条件和数据位;
停止条件和数据位;
重复起始条件和停止条件。
24 特性总结
IIC肯定是2线的(不算地线)IIC协议确实很科学,比3/4线的SPI要好,当然线多通讯速率相对就快了
IIC的原则是
l 在SCL=1(高电平)时,SDA千万别忽悠!!!否则,SDA下跳则"判罚"为"起始信号S",SDA上跳则"判罚"为"停止信号P"
l 在SCL=0(低电平)时,SDA随便忽悠!!!(可别忽悠过火到SCL跳高)
每个字节后应该由对方回送一个应答信号ACK做为对方在线的标志非应答信号一般在所有字节的最后一个字节后一般要由双方协议签定
SCL必须由主机发送,否则天下大乱
首字节是"片选信号",即7位从机地址加1位方向(读写)控制从机收到(听到)自己的地址才能发送应答信号(必须应答!!!)表示自己在线其他地址的从机不允许忽悠!!!(当然群呼可以忽悠但只能听不许说话)
读写是站在主机的立场上定义的"读"是主机接收从机数据,"写"是主机发送数据给从机
重复位主要用于主机从发送模式到接收模式的转换"信号",由于只有2线,所以收发转换肯定要比SPI复杂,因为SPI可用不同的边沿来收发数据,而IIC不行
在硬件IIC模块,特别是MCU/ARM/DSP等每个阶段都会得到一个准确的状态码,根据这个状态码可以很容易知道现在在什么状态和什么出错信息
7位IIC总线可以挂接127个不同地址的IIC设备,0号"设备"作为群呼地址10位IIC总线可以挂接更多的10位IIC设备
原文地址:linux下IIC驱动开发分析(2) 作者:putiancaijunyu
31 Linux下IIC驱动架构
Linux定义了系统的IIC驱动体系结构,在Linux系统中,IIC驱动由3部分组成,即IIC核心、IIC总线驱动和IIC设备驱动。这3部分相互协作,形成了非常通用、可适应性很强的IIC框架。
311 IIC核心
IIC 核心提供了IIC总线驱动和设备驱动的注册、注销方法,IIC通信方法(即“algorithm”,笔者认为直译为“运算方法”并不合适,为免引起误解, 下文将直接使用“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。
在我们的Linux驱动的i2c文件夹下有algos,busses,chips三个文件夹,另外还有i2c-corec和i2c-devc两个文件。
i2c-corec文件实现了I2Ccore框架,是Linux内核用来维护和管理的I2C的核心部分,其中维护了两个静态的List,分别记录系统中的I2Cdriver结构和I2Cadapter结构。I2Ccore提供接口函数,允许一个I2Cadatper,I2Cdriver和I2Cclient初始化时在I2Ccore中进行注册,以及退出时进行注销。同时还提供了I2C总线读写访问的一般接口,主要应用在I2C设备驱动中。
312 IIC总线驱动
IIC总线驱动是对IIC硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至直接集成在CPU内部。总线驱动的职责,是为系统中每个I2C总线增加相应的读写方法。但是总线驱动本身并不会进行任何的通讯,它只是存在那里,等待设备驱动调用其函数。
IIC总线驱动主要包含了IIC适配器数据结构i2c_adapter、IIC适配器的algorithm数据结构i2c_algorithm和控制IIC适配器产生通信信号的函数。经由IIC总线驱动的代码,我们可以控制IIC适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。
 Busses文件夹下的i2c-mpcc文件实现了PowerPC下I2C总线适配器驱动,定义描述了具体的I2C总线适配器的i2c_adapter数据结构,实现比较底层的对I2C总线访问的具体方法。I2Cadapter 构造一个对I2Ccore层接口的数据结构,并通过接口函数向I2Ccore注册一个控制器。I2Cadapter主要实现对I2C总线访问的算法,iic_xfer() 函数就是I2Cadapter底层对I2C总线读写方法的实现。同时I2Cadpter 中还实现了对I2C控制器中断的处理函数。
313 IIC设备驱动
IIC设备驱动是对IIC硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的IIC适配器上,通过IIC适配器与CPU交换数据。设备驱动则是与挂在I2C总线上的具体的设备通讯的驱动。通过I2C总线驱动提供的函数,设备驱动可以忽略不同总线控制器的差异,不考虑其实现细节地与硬件设备通讯。
IIC设备驱动主要包含了数据结构i2c_driver和i2c_client,我们需要根据具体设备实现其中的成员函数。
i2c-devc文件中实现了I2Cdriver,提供了一个通用的I2C设备的驱动程序,实现了字符类型设备的访问接口,实现了对用户应用层的接口,提供用户程序访问I2C设备的接口,包括实现open,release,read,write以及最重要的ioctl等标准文件 *** 作的接口函数。我们可以通过open函数打开 I2C的设备文件,通过ioctl函数设定要访问从设备的地址,然后就可以通过 read和write函数完成对I2C设备的读写 *** 作。
通过I2Cdriver提供的通用方法可以访问任何一个I2C的设备,但是其中实现的read,write及ioctl等功能完全是基于一般设备的实现,所有的 *** 作数据都是基于字节流,没有明确的格式和意义。为了更方便和有效地使用I2C设备,我们可以为一个具体的I2C设备开发特定的I2C设备驱动程序,在驱动中完成对特定的数据格式的解释以及实现一些专用的功能。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10736288.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存