人工智能常用的开发框架如下:
1、TensorFlow
TensorFlow是人工智能领域最常用的框架,是一个使用数据流图进行数值计算的开源软件,该框架允许在任何CPU或GPU上进行计算,无论是台式机、服务器还是移动设备都支持。该框架使用C++和Python作为编程语言,简单易学。
2、微软的CNTK
CNTK是一款开源深度学习工具包,是一个提高模块化和维护分离计算网络,提供学习算法和模型描述的库,可以同时利用多台服务器,速度比TensorFlow快,主要使用C++作为编程语言。
3、Theano
Theano是一个强大的Python库,该库使用GPU来执行数据密集型计算, *** 作效率很高,常被用于为大规模的计算密集型 *** 作提供动力。
4、Caffe
Caffe是一个强大的深度学习框架,主要采用C++作为编程语言,深度学习速度非常快,借助Caffe,可以非常轻松地构建用于图像分类的卷积神经网络。
5、Keras
Keras是一个用Python编写的开源的神经网络库,与TensorFlow、CNTK和Theano不同,它是作为一个接口,提供高层次的抽象,让神经网络的配置变得简单。
6、Torch
Torch是一个用于科学和数值的开源机器学习库,主要采用C语言作为编程语言,它是基于Lua的库,通过提供大量的算法,更易于深入学习研究,提高了效率和速度。它有一个强大的n维数组,有助于切片和索引之类的 *** 作。除此之外,还提供了线性代数程序和神经网络模型。
7、AccordNET
AccordNET框架是一个NET机器学习框架,主要使用C#作为编程语言,该框架可以有效地处理数值优化、人工神经网络,甚至是可视化,除此之外,AccordNET对计算机视觉和信号处理功能非常强大,同时也使得算法的实现变得简单。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)