提出模型:表征服务器利用率和电源行为之间的关系,对实际峰值功耗建模。引入新的 *** 作系统指标,捕获所需信息,以较低的开销设计峰值功率。
如今,数据中心运营商普遍以几十分钟到几小时的采样间隔收集实用跟踪信息。 由于存储和处理的开销,对成千上万的服务器禁止更细粒度的采样。 例如,对于1000个节点的群集,以OS调度程序的粒度(100Hz)采样将每周产生225 GB数据。
要确定服务器的峰值功率,就要了解服务器 开关模式电源单元(SMPSU插座式电源) 的行为。这些设备效率很高,但是依赖于开关和电荷存储机制,从而将 RC(电阻-电容)行为 引入了功耗。我们的贡献是将服务器的 *** 作系统视图与电源能耗峰值相连接。
介绍一个易于采集的 *** 作系统级别的度量(30ms),该度量可确定一段时间内的峰值功耗。通过模型合并SMPSU的RC行为,并以较低的开销跟踪峰值功率。这种机制可以记录随时间变化的峰值功率,并有助于大规模数据中心能耗供应研究。
贡献:
说明了以细粒度采集利用率所面临的挑战,以及峰值和平均度量之间的重要差异。
服务器开关电源单元的特性及其能耗与服务器利用率之间关系的解析信号处理模型。
一种新的 *** 作系统级度量标准,可捕获峰值功率信息以用于服务器检测。
通常PDU会被过度配置,预配置容量远高于平均负载。
功率上限power capping是一种数据中心级别的技术,可以对服务器的峰值功耗(例如,使用控制回路)进行硬限制。节流服务器电源DVFS(通过频率/电压缩放)用作安全机制,以确保不超过最大功率水平并且断路器不跳闸。使得PDU和其他电源供应基础架构就可以得到超额订购,从而降低了有效的资本成本。由于负载/功率峰值很少,因此节流性能几乎没有损失。通过使用电源路由可以进一步降低资本成本,这可以在负载不平衡时在PDU之间转移负载。
所有这些技术都需要软件机制来跟踪和预测峰值功率,以管理每个服务器,电路和PDU的功率预算,同时最大程度地降低性能节流。尽管可以通过显式计量和记录来跟踪峰值功率,但是直接从 *** 作系统级别的指标评估峰值功率可以大大降低成本。要从 *** 作系统级别的指标推断和记录峰值功率,我们必须了解服务器电源的 *** 作及其与利用率的关系。
服务器中SMPSU设备的行为以及其与OS观察到的利用率的关系。
研究对象: 两种不同的系统:具有便宜商品PSU(“商品”)的小型系统和具有企业级PSU(“服务器”)的大型系统。 由于SMPSU的设计不同,这些系统在行为上存在一些差异。 但是,与预测峰值能耗方面相似。
商品PSU的峰值传输电流比服务器更明显。 这种差异是由于在高端设备中常见的第一级额外开关调节,用于产生更连续的电流。
使用工作负载SQUARE观察 利用率 变化 频率 的影响。使内核在 矩阵乘法 与处理器 空闲模式 之间切换,使系统利用率产生方波。工作负载的 占空比(占空比是指在一个脉冲循环内,通电时间相对于总时间所占的比例) 固定为50%,平均利用率为50%。改变方波的频率,并观察PSU的响应。
使用工作负载STEP表征 利用率变化和PSU响应之间的延迟 。使系统处于空闲状态,等待直到PSU行为达到稳定状态。然后在所有内核上进行矩阵乘法。由于无法直接从外部观察CPU利用率,因此在过渡到在示波器上开始计时之前立即发送了一个信号(使用比预期的SMPSU响应快得多的通用I / O)。
图5表明:调制频率对观察到的功率波形有很大影响。 只要对CPU的利用率进行缓慢调制,功耗的包络就大致类似于方波,与CPU的行为相匹配。 然而,随着频率增加,功率消耗变得更加均匀。
对SMPSU峰值进行建模,以细粒度(在许多系统的内核调度间隔附近)监控利用率。
使用STEP工作负载研究SMPSU电源负载的相位延迟。 瞬时功率响应存在一个延迟,该延迟随着RC滤波的阶跃函数的期望而增加。 图示利用率转换的I / O信号(“trigger”)以及隐含的利用率波形(“ Utilization”)。 最后,我们显示了一个已过滤(“filter”)的阶跃函数,该函数适合观察到的上升波形。 该信号由具有界限频率30 Hz的一阶RC滤波器产生。
低于20HZ的更细微的变化会被电源的RC行为过滤掉,因此不考虑。 通过对SMPSU的运行及其与服务器利用率的关系的新了解,我们构建了一种开销低的方法,可以从 *** 作系统内核的利用率中推断出峰值功率。 然后,我们使用真实的机器验证我们的模型,并表明我们可以预测峰值功率曲线,且误差低于20%。
实验设置:两种服务器配置验证能耗模型。
在系统执行Linux内核的并行编译时收集能耗,该工作负载产生了混乱的突发使用模式。
瞬时能耗(“实测”)。预测能耗(“ Predicted”)很好地跟踪能耗峰值,但有时能耗仍然超出预测值。 幸运的是,该模型趋于保守,并且高估的能耗多于低估的能耗。 因此,它将在例如功率预算/封顶研究中提供保守估计。 商品计算机和服务器计算机的标准化均方根偏差(NRMSD)分别为14%和19%。
总结
1使用CPU利用率对服务器的峰值功耗建模。
2描述了OS级利用率与现代服务器中SMPSU行为之间以前被忽略的关系。
3通过测量真实的服务器PSU,证明必须以 33 ms或更低的粒度监视利用率以预测峰值功率 。 我们基于轻量级PSU的RC行为的信号处理启发模型,介绍了OS级解决方案,并演示了峰值功率可以近似在20%的NRMSD之内。第一步:在终端运行Java程序
第二步:通过命令 pidof java 找到已经启动的java进程的ID,选择需要查看的java程序的进程ID
第三步:使用命令 kill -3 <java进行的 pid> 打印出java程序的线程堆栈信息
第四步:通常情况下运行的项目可能会比较大,那么这个时候打印的堆栈信息可能会有几千到几万行,为了方便查看,我们往往需要将输出内容进行重定向
使用linux下的重定向命令方式即可:例如: demosh > runlog 2>&1 将输出信息重定向到 runlog中。
注:在 *** 作系统中,0 1 2分别对应着不同的含义, 如下:
0 : 标准输入,即:C中的stdin , java中的Systemin
1 : 标准输出, 即:C中的stdout ,java中的Systemout
2 : 错误输出, 即:C中的stderr , java中的Systemerr
Demo:
----------------------------------------------------------------------------------------------
Sources Code :
public class PrintThreadTrace {
Object obj1 = new Object();
Object obj2 = new Object();
public void func1(){
synchronized (obj1){
func2();
}
}
public void func2(){
synchronized (obj2){
while(true){
Systemoutprint("");
}
}
}
public static void main(String[] args){
PrintThreadTrace ptt = new PrintThreadTrace();
pttfunc1();
}
}
----------------------------------------------------------------------------------------------------------------
按照步骤 *** 作后的打印输出信息:
Full thread dump Java HotSpot(TM) 64-Bit Server VM (2479-b02 mixed mode):
"Service Thread" daemon prio=10 tid=0x00007fdc880a9000 nid=0x12a4 runnable [0x0000000000000000]
javalangThreadState: RUNNABLE
"C2 CompilerThread1" daemon prio=10 tid=0x00007fdc880a7000 nid=0x12a3 waiting on condition [0x0000000000000000]
javalangThreadState: RUNNABLE
"C2 CompilerThread0" daemon prio=10 tid=0x00007fdc880a4000 nid=0x12a2 waiting on condition [0x0000000000000000]
javalangThreadState: RUNNABLE
"JDWP Command Reader" daemon prio=10 tid=0x00007fdc50001000 nid=0x1299 runnable [0x0000000000000000]
javalangThreadState: RUNNABLE
"JDWP Event Helper Thread" daemon prio=10 tid=0x00007fdc880a1800 nid=0x1298 runnable [0x0000000000000000]
javalangThreadState: RUNNABLE
"JDWP Transport Listener: dt_socket" daemon prio=10 tid=0x00007fdc8809e000 nid=0x1297 runnable [0x0000000000000000]
javalangThreadState: RUNNABLE
"Signal Dispatcher" daemon prio=10 tid=0x00007fdc88091000 nid=0x1296 waiting on condition [0x0000000000000000]
javalangThreadState: RUNNABLE
"Finalizer" daemon prio=10 tid=0x00007fdc88071800 nid=0x1295 in Objectwait() [0x00007fdc77ffe000]
javalangThreadState: WAITING (on object monitor)
at javalangObjectwait(Native Method)
- waiting on <0x00000000ecb04858> (a javalangrefReferenceQueue$Lock)
at javalangrefReferenceQueueremove(ReferenceQueuejava:135)
- locked <0x00000000ecb04858> (a javalangrefReferenceQueue$Lock)
at javalangrefReferenceQueueremove(ReferenceQueuejava:151)
at javalangrefFinalizer$FinalizerThreadrun(Finalizerjava:209)
"Reference Handler" daemon prio=10 tid=0x00007fdc8806f800 nid=0x1294 in Objectwait() [0x00007fdc7c10b000]
javalangThreadState: WAITING (on object monitor)
at javalangObjectwait(Native Method)
- waiting on <0x00000000ecb04470> (a javalangrefReference$Lock)
at javalangObjectwait(Objectjava:503)
at javalangrefReference$ReferenceHandlerrun(Referencejava:133)
- locked <0x00000000ecb04470> (a javalangrefReference$Lock)
"main" prio=10 tid=0x00007fdc8800b800 nid=0x128e runnable [0x00007fdc8fef7000]
javalangThreadState: RUNNABLE
at comwenchainstudyPrintThreadTracefunc2(PrintThreadTracejava:20)
- locked <0x00000000ecc04b20> (a javalangObject)
at comwenchainstudyPrintThreadTracefunc1(PrintThreadTracejava:13)
- locked <0x00000000ecc04b10> (a javalangObject)
at comwenchainstudyPrintThreadTracemain(PrintThreadTracejava:27)
"VM Thread" prio=10 tid=0x00007fdc8806b000 nid=0x1293 runnable
"GC task thread#0 (ParallelGC)" prio=10 tid=0x00007fdc88021000 nid=0x128f runnable
"GC task thread#1 (ParallelGC)" prio=10 tid=0x00007fdc88023000 nid=0x1290 runnable
"GC task thread#2 (ParallelGC)" prio=10 tid=0x00007fdc88024800 nid=0x1291 runnable
"GC task thread#3 (ParallelGC)" prio=10 tid=0x00007fdc88026800 nid=0x1292 runnable
"VM Periodic Task Thread" prio=10 tid=0x00007fdc880b3800 nid=0x12a5 waiting on condition
JNI global references: 1391
Heap
PSYoungGen total 17920K, used 1270K [0x00000000ecb00000, 0x00000000ede80000, 0x0000000100000000)
eden space 15872K, 8% used [0x00000000ecb00000,0x00000000ecc3d898,0x00000000eda80000)
from space 2048K, 0% used [0x00000000edc80000,0x00000000edc80000,0x00000000ede80000)
to space 2048K, 0% used [0x00000000eda80000,0x00000000eda80000,0x00000000edc80000)
ParOldGen total 39424K, used 0K [0x00000000c6200000, 0x00000000c8880000, 0x00000000ecb00000)
object space 39424K, 0% used [0x00000000c6200000,0x00000000c6200000,0x00000000c8880000)
PSPermGen total 21504K, used 2619K [0x00000000c1000000, 0x00000000c2500000, 0x00000000c6200000)
object space 21504K, 12% used [0x00000000c1000000,0x00000000c128edd8,0x00000000c2500000)
----------------------------------------------------------------------------------------------------------------------------
上面的信息中包含了当前JVM中所有运行的线程信息,其中在示例中我们启动的线程为main线程,其余的都是JVM自己创建的。
在打印的信息中,我们可以清楚的看见当前线程的调用上下文,可以很清楚的知道程序的运行情况。
并且我们在最后面还能看见当前虚拟机中的内存使用情况,青年世代,老年世代的信息等等
PS: 在JDK15以上,我们可以通过在Java程序中调用ThreadgetStackTrace()方法来进行堆栈的自动打印,使得线程堆栈的打印时机可编程控制。
文章知识点与官方知识档案匹配
Java技能树首页概览
89841 人正在系统学习中
点击阅读全文
打开CSDN,阅读体验更佳
jstack-查看Java进程的线程堆栈信息,锁定高消耗资源代码
jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下: jstack[option]pid jstack[option]executable core jstack[option][server-id@]remote-hostname-or-ip 命令行参数选项说明如下:
011Java并发包018查看线程堆栈信息_执笔未来的博客
javautilconcurrentScheduledThreadPoolExecutor$DelayedWorkQueuetake(ScheduledThreadPoolExecutorjava:1088) javautilconcurrentScheduledThreadPoolExecutor$DelayedWorkQueuetake(ScheduledThreadPoolExecutorjava:809) javautilconcurre
最新发布 jstack -- java堆栈常用排查指令
jstack -- java堆栈常用排查指令
继续访问
热门推荐 jstack 命令查看JAVA线程堆栈
JAVA堆栈信息实际生产中,可能由于开发以及测试未能全面覆盖的代码质量、性能问题,而引致线程挂起甚至崩溃。可能就需要查看堆栈信息来排查问题了。jps -lvmjps -lvm 用于查看当前机器上运行的java进程。C:\Users\Administrator>jps -lvm 7348 -DosgirequiredJavaVersion=18 -Dosgiinstanceareadefa
继续访问
Java多线程——查看线程堆栈信息
Java多线程——查看线程堆栈信息 摘要:本文主要介绍了查看线程堆栈信息的方法。 使用Thread类的getAllStackTraces()方法 方法定义 可以看到getAllStackTraces()方法的返回值是一个Map对象,key是Thread的实例,value是一个StackTraceElement实例数组: 1 public static Map<Thread, S
继续访问
java堆栈常用排查指令
java 异常排查四板斧 1、查看java 堆栈线程信息 说明 jstack命令打印指定Java进程、核心文件或远程调试服务器的Java线程的Java堆栈跟踪信息。 对于每个Java框架,完整的类名,方法名, 字节码索引(BCI)和行号(如果有的话)被打印出来。 使用-m选项,jstack命令打印程序中所有线程的Java和本机帧 计数器(PC)。 对于每个本机帧,当可用时,将打印离PC最近的本机符号。 c++乱码的名字不会被修改。 要demangle c++名称,输出这个 命令可以管道到c++filt。 当
继续访问
java诊断工具-Arthas(thread命令)查看当前线程堆栈
cpu使用率与linux 命令top -H -p <pid>的线程CPU类似 1、支持一键展示当前最忙的前N个线程并打印堆栈 thread -n 3 没有线程ID,包含[Internal]表示为JVM内部线程,参考dashboard命令的介绍。 cpuUsage为采样间隔时间内线程的CPU使用率,与dashboard命令的数据一致。 deltaTime为采样间隔时间内线程的增量CPU时间,小于1ms时被取整显示为0ms。 time线程运行总CPU
继续访问
java查看线程的堆栈信息
通过使用jps 命令获取需要监控的进程的pid,然后使用jstackpid 命令查看线程的堆栈信息。 通过jstack命令可以获取当前进程的所有线程信息。 每个线程堆中信息中,都可以查看到线程ID、线程的状态(wait、sleep、running 等状态)、是否持有锁信息等。 jstack -l <pid> >jvm_listlockstxt 转
继续访问
java 查看线程堆栈信息_Java多线程——查看线程堆栈信息
java多线程——查看线程堆栈信息摘要:本文主要介绍了查看线程堆栈信息的方法。使用thread类的getallstacktraces()方法方法定义可以看到getallstacktraces()方法的返回值是一个map对象,key是thread的实例,value是一个stacktraceelement实例数组:1 public static map getallstacktraces()使用可以使
继续访问
java线程堆栈信息分析
java堆栈信息分析
继续访问
java 查看堆栈_javap 命令查看堆栈中信息
javap命令是对java文件进行反编译,通过这个命令可以看到堆栈中是怎么压栈和出栈的已经执行顺序,这里简单解释下javap的简单的使用,下面举个例子:题目:i++ 和++i的区别解释:简单点说 这个问题都不难回答,这里就不说了,但是实际上堆栈中区别也是老大了(这里就用到了javap命令), 步骤:1在任意一个盘下面建一个名为Testjava的文件(文件名可以随意命名)代码如下:public
继续访问
java 查看线程堆栈信息_jstack-查看Java进程的线程堆栈信息,锁定高消耗资源代码。
jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下:jstack[option]pidjstack[option]executablecorejstack[option][server-id@]remote-hostname-or-ip命令行参数选项说明如下:-llonglistings,会打印出额外的锁信息,在发生死锁时可以用jstack-lpid来观察
继续访问
java堆栈信息怎么看_线程堆栈信息怎么看? - cs_person的个人空间 - OSCHINA - 中文开源技术交流社区
一条线程堆栈信息大概长成下面这个样子:RMI TCP Connection(267865)-17216525" daemon prio=10 tid=0x00007fd508371000 nid=0x55ae waiting for monitor entry [0x00007fd4f8684000]javalangThreadState: BLOCKED (on object m
继续访问
线程堆栈信息怎么看?
一条线程堆栈信息大概长成下面这个样子: RMI TCP Connection(267865)-17216525" daemon prio=10 tid=0x00007fd508371000 nid=0x55ae waiting for monitor entry [0x00007fd
继续访问
java的栈和堆
栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。 Java 的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在
继续访问
查看java线程_JAVAJava线程堆栈信息查看
如何获得线程的堆栈信息?线上服务器cpu 100%了,该如何排查问题?1top命令查询哪个pid进程占用cpu高(ps -ef|grep java 获取PID号)2通过 top -Hp pid 可以查看该进程下各个线程的cpu使用情况,获取占用cpu高的线程id3执行命令:printf "%X\n" 线程tid(用于获取占用cpu高的线程id的16进制数)4执行命令:jstack pid
继续访问
kill -3 java_kill -3 PID命令获取java应用堆栈信息
一、应用场景:当linux服务器出现异常情况(响应缓慢,负载持续飙升)并且服务器没有安装对应的包而无法使用jstack等命令时,可以使用linux的kill相关命令打印堆栈信息。命令格式:kill -3 PID二、执行步骤:21、获取java进程的PIDps -ef|grep java结果的第二列数字就是进程对应的pid。22、kill -3 PID(1)如果项目通过Tomcat进行发布(普通
继续访问
jstack 工具 查看JVM堆栈信息
1|0介绍 jstack是java虚拟机自带的一种堆栈跟踪工具。jstack用于打印出给定的java进程ID或corefile或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项"-J-d64",Windows的jstack使用方式只支持以下的这种方式: jstack [-l] pid 主要分为两个功能: a. 针对活着的进程做本地的或远程的线程dump; b. 针对core文件做线程dump。 jstack用于生成java虚拟机当前时刻的线程快照。线程快照是
继续访问
linux查看java堆栈
1、查看JAVA进程JVM参数 jinfo -flags pid(进程号) -XX:CICompilerCount=2 最大的并行编译数 -XX:InitialHeapSize=16777216 JVM 的初始堆内存大小 -XX:MaxHeapSize=257949696 JVM 的最大堆内存大小 -XX:MaxNewSize=85983232 -XX:MinHeapDeltaBytes=196608 -XX:NewSize=5570560 -XX:OldSize=11206656 2、JVM 查看
继续访问
Linux 如何查看一个进程的堆栈
有两种方法:第一种:pstack 进程ID第二种,使用gdb 然后attach 进程ID,然后再使用命令 thread apply all bt 两种方法都可以列出进程所有的线程的当前的调用栈。不过,使用gdb的方法,还可以查看某些信息,例如局部变量,指针等。不过,如果只看调用栈的话,pstack还是很方便的。
继续访问
JAVA获取堆栈信息
1 通过Throwable获取 StackTraceElement[] stackTrace = new Throwable()getStackTrace(); 2 通过Thread获取 StackTraceElement[] stackTrace = ThreadcurrentThread()getStackTrace();
继续访问
java 查看线程栈大小_基于 Java 线程栈的问题排查
除日志外,还有没有别的方式跟踪线上服务问题呢?或者,跟踪并排除日志里无法发现的问题?方法当然是有的,就是通过现场快照定位并发现问题。我们所说的现场,主要指这两方面:Java 线程栈。线程栈是Java线程工作的快照,可以获得当前线程在做什么;Java 内存堆。堆是JVM的内存快照,可以获取内存分配相关信息。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)