Hadoop如何处理?如何增强Hadoop 安全?

Hadoop如何处理?如何增强Hadoop 安全?,第1张


Hadoop是由Apache开源软件基金会开发的,运行于大规模普通服务器上的分布式系统基础架构,用于大规模数据的存储、计算、分析等。通过使用Hadoop平台用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。2007年雅虎发布了第一个Apache Hadoop版本0141;2008年雅虎用Hadoop做到全网尺度的搜索;2009年雅虎把内部版本全部开源,于是IBM也加入Hadoop的开发阵营;2010年Facebook宣布正式运行世界最大的Hadoop集群;2011年Apache Hadoop10版本发布;2012年Apache Hadoop20版本发布。下面具体介绍一下Hadoop系统的架构。



Hadoop由许多元素构成,如下图图所示,包括HBase、Hive、Pig、Chukwa、Oozie和ZooKeeper等,但是其核心组件为HDFS和MapReduce。


HDFS是Hadoop Distributed File System系统的缩写,是一个使用JAVA语言实现的、分布式的、可扩展的文件系统,它存储 Hadoop 集群中所有存储节点上的文件,由NameNode和DataNode两部分组成。HDFS的上一层是 MapReduce 引擎,该引擎由 JobTrackers 和 TaskTrackers 组成,用来对存储在HDFS上的数据进行计算分析。下面来具体介绍HDFS和MapReduce的工作原理及应用。


HDFS

HDFS采用master/slave架构。一个HDFS集群是由一个Namenode和一定数目的Datanodes组成。Namenode是一个中心服务器,负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。集群中的Datanode是集群中的数据节点,用来存储实际的数据,并负责管理它所在节点上的数据存储。HDFS公开了文件系统的名字空间,用户能够以文件的形式在上面存储数据。从内部看,一个文件被分成一个或多个数据块,这些块存储在一组Datanode上。Namenode执行文件系统的名字空间 *** 作,比如打开、关闭、重命名文件或目录。它也负责确定数据块到具体Datanode节点的映射。Datanode负责处理文件系统客户端的读写请求。在Namenode的统一调度下进行数据块的创建、删除和复制,下面就具体来阐述HDFS系统中涉及的基本概念;



数据块(Block) HDFS和传统的分布式文件系统一样,也采用了数据块的概念,将数据分割成固定大小的数据块进行存储,默认大小为64MB,块的大小可针对每个文件配置,由客户端任意指定,并且每个块都有属于自己的全局ID,作为一个独立的单位存储在集群服务器上。与传统分布式文件系统不同的是,如果实际数据没有达到块大小时,则并不实际占用磁盘空间。HDFS元数据 HDFS元数据由文件系统目录树信息、文件和数据块的对应关系和块的存放位置三个部分组成,文件系统目录树信息包括文件名、目录名及文件和目录的从属关系,文件和目录的大小,创建及最后访问时间。文件和块的对应关系记录了文件由哪些块组成。此外元数据还记录了块的存放位置,包括存放块的机器名和块ID。NameNode HDFS对元数据和实际数据采取分别存储的方式,元数据存储在一台指定的服务器上,称为NameNode,实际数据则存储在集群中的其他机器上的文件系统中,称为DataNode。NameNode是用来管理文件系统命名空间的组件,并且一个HDFS集群只有一台NameNode,由于元数据存储在NameNode上,当NameNode出现故障时将导致整个集群无法工作。元数据保存在NameNode的内存当中,以便快速查询,1G内存大致可以存放1000000个块对应的元数据信息。DataNode DataNode用来存储块的实际数据,每个块会在本地文件系统产生两个文件,一个是实际的数据文件,另一个是块的附加信息文件,其中包括数据的校验和生成时间等信息。DataNode通过心跳包(Heartbeat)与NameNode通信,当客户端读取/写入数据的时候将直接与DataNode进行通信。Secondary NameNode Secondary NameNode在Hadoop集群中起到至关重要的作用,首先需要明确它并不是NameNode的备份节点,它和NameNode运行在不同的主机上,它主要的工作是阶段性地合并NameNode的日志文件,控制NameNode日志文件的大小。此外,在NameNode硬盘损坏的情况下,Secondary NameNode也可用作数据恢复,但恢复的只是部分数据。
HDFS架构及工作原理

下图为HDFS对数据存储的原理图,NameNode存储了DataNode节点所存储数据的元数据,即Hdfs和MapReduce两个文件的分块信息,假设单个文件的存储份数为3,即每个数据块有三份备份,那么数据在DataNode上的存储的原则为:相同的两个数据块存储在同一机架的不同的DataNode节点上;第三个数据块存储在不同机架上的DataNode节点上。这样就解决了当某个DataNode节点出现故障的时候数据丢失的问题,保障了存储在HDFS系统上数据的可用性。


Hadoop MapReduce

MapReduce是Google公司的核心计算模型,它将运行于大规模集群上的复杂的并行计算过程高度地抽象为两个函数:Map和Reduce。MapReduce也可以看成是一种解决问题的方法,它把一个复杂的任务分解成多个任务,Map负责把任务分解成多个任务,Reduce负责把分解后多任务处理的结果汇总起来。
Hadoop中的MapReduce是一个简易的软件框架,基于它写出来的应用程序能够运行在由上千台机器组成的大型集群上,并以一种可靠容错的方式并行处理TB级别的数据集,实现了Hadoop在集群上的数据和任务的并行计算与处理。在并行计算中其他的种种复杂的问题,如分布式存储、工作调度、负载均衡、容错处理、网络通信等均由MapReduce框架负责处理,编程人员可以不用关心。用MapReduce来处理的数据集必须具备这样的特点:待处理的数据集可以分解成许多小的数据集,并且每个小的数据集都可以完全并行地进行处理。


Hadoop MapReduce实现

Hadoop MapReduce是基于HDFS的MapReduce编程框架实现的,我们把MapReduce处理的问题称为作业 (Job),并将作业分解为任务 (Task),在MapReduce执行过程中需要有两种任务。



Map 把输入的键/值对转换成一组中间结果的键/值对Reduce 把Map任务产生的一组具有相同键的中间结果根据逻辑转换生成较小的最终结果。
Hadoop MapReduce的服务进程

Hadoop MapReduce有两个主要的服务进程,一个是单独运行在主节点上的JobTracker进程,另一个是运行在每个集群从节点上的TaskTracker进程。服务进程部署如下图所示。

JobTraker和NameNode运行在同一个服务器上,我们称为Hadoop集群的主节点,负责接收客户端提交的作业,并将任务分配到不同的计算节点TaskTracker上,同时监控作业的运行情况,完成作业的更新和容错处理;Tasktracker通常和DataNode装在一起,称为Hadoop集群的从节点,它调用Map和Reduce执行JobTracker指派的任务,并发送心跳消息给JobTracker,向JobTracker汇报可运行任务的数量。


Hadoop安全机制

Hadoop 一直缺乏安全机制,主要表现在以下几个方面。



User to Service:NameNode或者JobTracker缺乏安全认证机制;DataNode缺乏安全授权机制;JobTracker缺乏安全授权机制。Service to Service安全认证:Datanode与TaskTracker缺乏安全授权机制,这使得用户可以随意启动假的DataNode和TaskTracker。磁盘或者通信连接没有经过加密。

为了增强Hadoop的安全机制, 从2009年起Apache专门抽出一个团队为Hadoop增加安全认证和授权机制,Apache Hadoop 100版本之后的版本添加了安全机制,但是升级到该版本后可能会导致Hadoop的一些应用不可用。

大数据数量庞大,格式多样化。

大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。

它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。

因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

  一、大数据建设思路

  1)数据的获得

大数据产生的根本原因在于感知式系统的广泛使用。

随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。

这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。

因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。

  2)数据的汇集和存储

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了

数据只有不断流动和充分共享,才有生命力。

应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。

数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。

  3)数据的管理

大数据管理的技术也层出不穷。

在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。

其中分布式存储与计算受关注度最高。

上图是一个图书数据管理系统。

  4)数据的分析

数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。

大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。

批处理是先存储后处理,而流处理则是直接处理数据。

挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。

  5)大数据的价值:决策支持系统

大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。

  6)数据的使用

大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。

大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。

二、大数据基本架构

基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。

一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。

因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。

Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。

其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:

  Hadoop体系架构

(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。

(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。

当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。

(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。

Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。

Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。

(4)Sqoop是为数据的互 *** 作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。

(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。

(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。

  Hadoop核心设计

  Hbase——分布式数据存储系统

Client:使用HBase RPC机制与HMaster和HRegionServer进行通信

Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况

HMaster: 管理用户对表的增删改查 *** 作

HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table

HStore:HBase存储的核心。

由MemStore和StoreFile组成。

HLog:每次用户 *** 作写入Memstore的同时,也会写一份数据到HLog文件

结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:

应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。

于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。

数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用惯,从而改进使用体验。

基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。

数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。

丰富的数据源是大数据产业发展的前提。

数据源在不断拓展,越来越多样化。

如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。

对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。

然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这降低了数据的价值。

  三、大数据的目标效果

通过大数据的引入和部署,可以达到如下效果:

  1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

  2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

  3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

  4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

  四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10797291.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存