katago在AutoDL几款GPU实例下benchmark测试

katago在AutoDL几款GPU实例下benchmark测试,第1张

前几天误打误撞注册了AutoDL后果然有些停不下来,算上折扣,要比阿里云、腾讯云的gpu服务器更为合适,同时AutoDL是容器化实例,这样初始化在几秒内完成,而阿里云等初始化过程中的GPU驱动、框架搭建时间有些过于漫长了。如果把时间考虑在内,AutoDL性别比就更高了。

但AutoDL受实例限制,暂时无法编译TensorRT Backend版本,编译的是cuda112版本。在不同GPU实例下简单测试了一下katago的benchmark,权重为kata1-b40c256-s10359230464-d2525387336。

使用阿里云最低端的Tesla T4,4核cpu,15G内存服务器作为参考。

在使用sabaki对弈感觉速度尚可,但经过测试,NVIDIA RTX 3060 / 12GB的成绩与阿里云的Tesla T4比想象中要差不少。

作为TeslaT4的替代者,NVIDIA RTX A4000 / 16GB成绩相比TeslaT4略好一点,也符合AutoDL首页算力排名。AutoDL北京地区实例均使用RTX A4000。

NVIDIA RTX 3090 / 24GB成绩两倍于NVIDIA RTX A4000 / 16GB,同样符合算力排名。

最令人吃惊的是NVIDIA RTX 2080Ti / 11GB,成绩直逼阿里云TeslaV100 16G。katago测试过程中,

第一次测试居然认为成绩出现误差,提示“Optimal number of threads is fairly high, increasing the search limit and trying again”自动重新测试了一遍。

不愧为显卡核d。难怪黄厂长严令禁止数据商将游戏显卡用于数据服务器上。其价格居然还要低于NVIDIA RTX A4000 / 16GB,这也是性价比最高的GPU实例。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10851973.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存