网站架构的硬架构

网站架构的硬架构,第1张

通常老板花钱请我们架构网站的时候,会给我们提出一些目标,诸如网站每天要能承受100万PV的访问量等等。这时我们要预算一下大概需要多大的带宽,计算带宽大小主要涉及两个指标(峰值流量和页面大小),我们不妨在计算前先做出必要的假设:

第一:假设峰值流量是平均流量的5倍。

第二:假设每次访问平均的页面大小是100K字节左右。

如果100万PV的访问量在一天内平均分布的话,折合到每秒大约12次访问,如果按平均每次访问页面的大小是100K字节左右计算的话,这12次访问总计大约就是1200K字节,字节的单位是Byte,而带宽的单位是bit,它们之间的关系是1Byte=8bit,所以1200KByte大致就相当于9600Kbit,也就是9Mbps的样子,实际情况中,我们的网站必须能在峰值流量时保持正常访问,所以按照假设的峰值流量算,真实带宽的需求应该在45Mbps左右。

当然,这个结论是建立在前面提到的两点假设的基础上,如果你的实际情况和这两点假设有出入,那么结果也会有差别。先看我们都需要哪些服务器:服务器,页面服务器,数据库服务器,应用服务器,日志服务器等等。

对于访问量大点的网站而言,分离单独的服务器和页面服务器相当必要,我们可以用ligabcgif/>,然后设置DNS轮循,达到最初级的负载均衡。当然,服务器多了就不可避免的涉及一个同步的问题,这个可以使用rsync软件来搞定。

数据库服务器是重中之重,因为网站的瓶颈问题十有八九是出在数据库身上。现在一般的中小网站多使用MySQL数据库,不过它的集群功能似乎还没有达到stable的阶段,所以这里不做评价。一般而言,使用MySQL数据库的时候,我们应该搞一个主从(一主多从)结构,主数据库服务器使用innodb表结构,从数据服务器使用myisam表结构,充分发挥它们各自的优势,而且这样的主从结构分离了读写 *** 作,降低了读 *** 作的压力,甚至我们还可以设定一个专门的从服务器做备份服务器,方便备份。不然如果你只有一台主服务器,在大数据量的情况下,mysqlmp基本就没戏了,直接拷贝数据文件的话,还得先停止数据库服务再拷贝,否则备份文件会出错。但对于很多网站而言,即使数据库服务仅停止了一秒也是不可接受的。如果你有了一台从数据库服务器,在备份数据的时候,可以先停止服务(slavestop)再备份,再启动服务(slavestart)后从服务器会自动从主服务器同步数据,一切都没有影响。但是主从结构也是有致命缺点的,那就是主从结构只是降低了读 *** 作的压力,却不能降低写 *** 作的压力。

为了适应更大的规模,可能只剩下最后这招了:横向/纵向分割数据库。所谓横向分割数据库,就是把不同的表保存到不同的数据库服务器上,比如说用户表保存在A数据库服务器上,文章表保存在B数据库服务器上,当然这样的分割是有代价的,最基本的就是你没法进行LEFTJOIN之类的 *** 作了。所谓纵向分割数据库,一般是指按照用户标识(user_id)等来划分数据存储的服务器,比如说:我们有5台数据库服务器,那么“user_id%5+1”等于1的就保存到1号服务器,等于2的就保存到2号服务器,以此类推,纵向分隔的原则有很多种,可以视情况选择。不过和横向分割数据库一样,纵向分割数据库也是有代价的,最基本的就是我们在进行如COUNT,SUM等汇总 *** 作的时候会麻烦很多。综上所述,数据库服务器的解决方案一般视情况往往是一个混合的方案,以其发挥各种方案的优势,有时候还需要借助memcached之类的第三方软件,以便适应更大访问量的要求。

如果有专门的应用服务器来跑PHP脚本是最合适不过的了,那样我们的页面服务器只保存静态页面就可以了,可以给应用服务器设置一些诸如appdomain之类的域名来和页面服务器加以区别。对于应用服务器,我还是更倾向于使用prefork模式的apache,配上必要的xcache之类的PHP缓存软件,加载模块要越少越好,除了mod_rewrite等必要的模块,不必要的东西统统舍弃,尽量减少>

如果条件允许,独立的日志服务器也是必要的,一般小网站的做法都是把页面服务器和日志服务器合二为一了,在凌晨访问量不大的时候cron运行前一天的日志计算,不过如果你使用awstats之类的日志分析软件,对于百万级访问量而言,即使按天归档,也会消耗很多时间和服务器资源去计算,所以分离单独的日志服务器还是有好处的,这样不会影响正式服务器的工作状态。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10871642.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存