目前大数据的发展依然存在诸多挑战,包括七大方面的挑战:业务部门没有清晰的大数据需求导致数据资产逐渐流失;企业内部数据孤岛严重,导致数据价值不能充分挖掘;数据可用性低,数据质量差,导致数据无法利用;数据相关管理技术和架构落后,导致不具备大数据处理能力;数据安全能力和防范意识差,导致数据泄露;大数据人才缺乏导致大数据工作难以开展;大数据越开放越有价值,但缺乏大数据相关的政策法规,导致数据开放和隐私之间难以平衡,也难以更好的开放。
挑战一:业务部门没有清晰的大数据需求
很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。由于业务部门需求不清晰,大数据部门又是非盈利部门,企业决策层担心投入比较多的成本,导致了很多企业在搭建大数据部门时犹豫不决,或者很多企业都处于观望尝试的态度,从根本上影响了企业在大数据方向的发展,也阻碍了企业积累和挖掘自身的数据资产,甚至由于数据没有应用场景,删除很多有价值历史数据,导致企业数据资产流失。因此,这方面需要大数据从业者和专家一起,推动和分享大数据应用场景,让更多的业务人员了解大数据的价值。
挑战二:企业内部数据孤岛严重
企业启动大数据最重要的挑战是数据的碎片化。在很多企业中尤其是大型的企业,数据常常散落在不同部门,而且这些数据存在不同的数据仓库中,不同部门的数据技术也有可能不一样,这导致企业内部自己的数据都没法打通。如果不打通这些数据,大数据的价值则非常难挖掘。大数据需要不同数据的关联和整合才能更好的发挥理解客户和理解业务的优势。如何将不同部门的数据打通,并且实现技术和工具共享,才能更好的发挥企业大数据的价值。
挑战三:数据可用性低,数据质量差
很多中型以及大型企业,每时每刻也都在产生大量的数据,但很多企业在大数据的预处理阶段很不重视,导致数据处理很不规范。大数据预处理阶段需要抽取数据把数据转化为方便处理的数据类型,对数据进行清洗和去噪,以提取有效的数据等 *** 作。甚至很多企业在数据的上报就出现很多不规范不合理的情况。以上种种原因,导致企业的数据的可用性差,数据质量差,数据不准确。而大数据的意义不仅仅是要收集规模庞大的数据信息,还有对收集到的数据进行很好的预处理处理,才有可能让数据分析和数据挖掘人员从可用性高的大数据中提取有价值的信息。Sybase的数据表明,高质量的数据的数据应用可以显著提升企业的商业表现,数据可用性提高10%,企业的业绩至少提升在10%以上。
挑战四:数据相关管理技术和架构
技术架构的挑战包含以下几方面:(1)传统的数据库部署不能处理TB级别的数据,快速增长的数据量超越了传统数据库的管理能力。如何构建分布式的数据仓库,并可以方便扩展大量的服务器成为很多传统企业的挑战;(2)很多企业采用传统的数据库技术,在设计的开始就没有考虑数据类别的多样性,尤其是对结构化数据、半结构化和非结构化数据的兼容;(3)传统企业的数据库,对数据处理时间要求不高,这些数据的统计结果往往滞后一天或两天才能统计出来。但大数据需要实时处理数据,进行分钟级甚至是秒级计算。传统的数据库架构师缺乏实时数据处理的能力;(4)海量的数据需要很好的网络架构,需要强大的数据中心来支撑,数据中心的运维工作也将成为挑战。如何在保证数据稳定、支持高并发的同时,减少服务器的低负载情况,成为海量数据中心运维的一个重点工作。
挑战五:数据安全
网络化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。如何保证用户的信息安全成为大数据时代非常重要的课题。在线数据越来越多,黑客犯罪的动机比以往都来的强烈,一些知名网站密码泄露、系统漏洞导致用户资料被盗等个人敏感信息泄露事件已经警醒我们,要加强大数据网络安全的建设。另外,大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制也提出更高的要求。目前很多传统企业的数据安全令人担忧。
挑战六:大数据人才缺乏
大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支掌握大数据技术、懂管理、有大数据应用经验的大数据建设专业队伍。目前大数据相关人才的欠缺将阻碍大数据市场发展。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。大数据的相关职位需要的是复合型人才,能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌控。未来,大数据将会出现约100万的人才缺口,在各个行业大数据中高端人才都会成为最炙手可热的人才,涵盖了大数据的数据开发工程师、大数据分析师、数据架构师、大数据后台开发工程师、算法工程师等多个方向。因此需要高校和企业共同努力去培养和挖掘。目前最大的问题是很多高校缺乏大数据,所以拥有大数据的企业应该与学校联合培养人才。
挑战七:数据开放与隐私的权衡
在大数据应用日益重要的今天,数据资源的开放共享已经成为在数据大战中保持优势的关键。商业数据和个人数据的共享应用,不仅能促进相关产业的发展,也能给我们的生活带来巨大的便利。由于政府、企业和行业信息化系统建设往往缺少统一规划,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍。另外一个制约我国数据资源开放和共享的一个重要因素是政策法规不完善,大数据挖掘缺乏相应的立法。无法既保证共享又防止滥用。因此,建立一个良性发展的数据共享生态系统,是我国大数据发展需要迈过去的一道砍。同时,开放与隐私如何平衡,也是大数据开放过程中面临的最大难题。如何在推动数据全面开放、应用和共享的同时有效地保护公民、企业隐私,逐步加强隐私立法,将是大数据时代的一个重大挑战。大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够 *** 作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从30开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash
大数据分析具备有多重优势,包括:
更好的决策:大数据分析可以为业务决策者提供他们所需的数据驱动的洞察力,以帮助企业开展竞争和业务发展
提高生产力:现代大数据工具使分析师能够更快地分析更多数据,从而提高个人生产力。此外,从这些分析中获得的见解通常使组织能够在整个公司内更广泛地提高生产力
降低成本:大数据分析可以提高运营效率,并帮助企业降低成本
改善客户服务:改善客户服务是大数据分析项目的第二个最常见的主要目标,社交媒体、客户关系管理(CRM)系统、其他客户为当今的企业提供了大量有关其客户的信息,他们很自然地会使用这些数据来更好地为这些客户提供服务
欺诈检测:大数据分析的另一个常见用途用于欺诈检测,特别是在金融服务行业。依赖于机器学习的大数据分析系统的一大优势是它们在检测模式和异常方面非常出色。这些能力可以让银行和xyk公司能够发现被盗xyk或欺诈性购买,并且通常是在持卡人知道出现问题之前发现问题
增加收入:当组织使用大数据来改善决策并改善客户服务时,增加收入通常是一个自然的结果
提高灵活性:大数据的好处之一是能够提高业务/IT敏捷性。许多组织正在使用其大数据来更好地调整其IT和业务工作,并且他们正在使用他们的分析来支持更快、更频繁地更改其业务战略和策略
更好的创新:创新是大数据的另一个共同利益,大数据分析主要是作为创新和颠覆市场的手段
更快的上市速度:使用大数据可以用来加快产品上市速度
服务器分为很多种类,在网络环境下,根据服务器提供的服务类型不同,分为文件服务器,数据库服务器,应用程序服务器,WEB服务器等具体看个人需求,可以选择VPS,云服务器,独立服务器,高防服务器,最后也要考虑应用的客户群,如果是地区性质选择地区机房就可以,不然就选择国内大机房,目前单一的客户种类也很罕见推荐使用双线机房。山东亿信通鲁南数据中心没有最靠谱只有更靠谱。根据你的描述,建议你:1、可能你手机或者电脑运行问题。可重新启动手机胡或者电脑。
2、可能是内存不够接收不到新的信息。可用软件清理一下垃圾,释放内存。
3、可能是下载的软件损害。可把原软件卸载,然后重新下载,安装。
4、可能是你手机、电脑上的日期或者时间不对。可查看一下日期时间,是否正确。如果日期和时间不正确,将会导致网络错误的出现。
5、也可能是软件的服务器出现问题,你只需要等一段时间就会恢复。
简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:
一、大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
二、大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列 *** 作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。
数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。
数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。
数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的 *** 作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。
三、大数据存储
大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:
1、基于MPP架构的新型数据库集群
采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。
较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。
2、基于Hadoop的技术扩展和封装
基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。
伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。
3、大数据一体机
这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、 *** 作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。
四、大数据分析挖掘
从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。
1、可视化分析
可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。
具有简单明了、清晰直观、易于接受的特点。
2、数据挖掘算法
数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。
数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。
3、预测性分析
预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。
帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。
4、语义引擎
语义引擎,指通过为已有数据添加语义的 *** 作,提高用户互联网搜索体验。
5、数据质量管理
指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等 *** 作,以提高数据质量的一系列管理活动。
以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapReduce、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie
······
想要学习更多关于大数据的知识可以加群和志同道合的人一起交流一下啊[>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)