高并发架构最大问题主要是由于网站PV访问量大,单台服务器承载大量访问所带来的压力,所以会采用多台服务器进行分流,采用服务器集群技术,对于每个请求访问会被 发送到不同的服务器。
这样架构的难点就在管理、维护、监控、负载等等都面临很大的技术问题,同时还需要应对某些业务的突发流量,像秒杀、促销等场景化使用什么技术解决高并发?
互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。
垂直扩展:提升单机处理能力。垂直扩展的方式又有两种:
(1)增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;
(2)提升单机架构性能,例如:使用Cache来减少IO次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;
在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。
不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。
水平扩展:只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践。
水平扩展要怎么来做?首先是软件服务拆分到不同的服务器进行部署,全部堆积在一台上性能将会受限。例如:Redis 就只是部署在独立的服务器上,其它软件都在这服务器上出现增加各个软件服务部署的服务后,采用技相关技术手段分担到各个服务器上。nginx反向代理层可以通过“DNS轮询”的方式来进行水平扩展。dns-server对于一个域名配置了多个解析ip,每次DNS解析请求来访问dns-server,会轮询返回这些ip。PHP站点层可以通过修改nginxconf实现负载均衡机制来进行水平扩展。从而设置多个web后端。服务层可以通过服务连接池来进行水平扩展;这里一部需要实现服务化,PHP像swoole tarsphp等数据库可以按照数据范围,或者数据哈希的方式来进行水平扩展;那高并发架构是什么样的?
常见互联网分布式架构如上,分为:
(1)客户端层:典型调用方是浏览器browser或者手机应用APP
(2)反向代理层:系统入口,反向代理
(3)站点应用层:实现核心应用逻辑,返回html或者json数据
(4)服务层:服务化,例如像Swoole
(5)数据-缓存层:缓存加速访问存储
(6)数据-数据库层:数据库固化数据存储集群(Cluster)是一组相互独立的、通过高速网络互联的计算机,它们构成了一个组,并以单一系统的模式加以管理。一个客户与集群相互作用时,集群像是一个独立的服务器。集群配置是用于提高可用性和可缩放性。集群系统的主要优点:高可扩展性、高可用性、高性能、高性价比。
集群类型
LB:Load Balancing 高可拓展,伸缩集群
HA:High Availability 高可用集群
HP:High Performance 高性能集群MySQL名字的来历
MySQL最初的开发者的意图是用mSQL和他们自己的快速低级例程(ISAM)去连接表格。不管怎样,在经过一些测试后,开发者得出结论:mSQL并没有他们需要的那么快和灵活。这导致了一个使用几乎和mSQL一样的API接口的用于他们的数据库的新的SQL接口的产生,这样,这个API被设计成允许为用于mSQL而写的第三方代码更容易移植到MySQL。
MySQL这个名字是怎么来的已经不清楚了。基本指南和大量的库和工具带有前缀“my”已经有10年以上,而且不管怎样,MySQL AB创始人之一的Monty Widenius的女儿也叫My。这两个到底是哪一个给出了MySQL这个名字至今依然是个迷,包括开发者在内也不知道。
MySQL的海豚标志的名字叫“sakila”,它是由MySQL AB的创始人从用户在“海豚命名”的竞赛中建议的大量的名字表中选出的。获胜的名字是由来自非洲斯威士兰的开源软件开发者Ambrose Twebaze提供。根据Ambrose所说,Sakila来自一种叫SiSwati的斯威士兰方言,也是在Ambrose的家乡乌干达附近的坦桑尼亚的Arusha的一个小镇的名字。
[编辑本段]MySQL的概述
MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。MySQL的官方网站的网址是:
[编辑本段]MySQL的特性
1使用C和C++编写,并使用了多种编译器进行测试,保证源代码的可移植性
2支持AIX、FreeBSD、HP-UX、Linux、Mac OS、Novell Netware、OpenBSD、OS/2 Wrap、Solaris、Windows等多种 *** 作系统
3为多种编程语言提供了API。这些编程语言包括C、C++、Eiffel、Java、Perl、PHP、Python、Ruby和Tcl等。
4支持多线程,充分利用CPU资源
5优化的SQL查询算法,有效地提高查询速度
6既能够作为一个单独的应用程序应用在客户端服务器网络环境中,也能够作为一个库而嵌入到其他的软件中提供多语言支持,常见的编码如中文的GB 2312、BIG5,日文的Shift_JIS等都可以用作数据表名和数据列名
7提供TCP/IP、ODBC和JDBC等多种数据库连接途径
8提供用于管理、检查、优化数据库 *** 作的管理工具
9可以处理拥有上千万条记录的大型数据库
[编辑本段]MySQL的应用
与其他的大型数据库例如Oracle、DB2、SQL Server等相比,MySQL自有它的不足之处,如规模小、功能有限(MySQL Cluster的功能和效率都相对比较差)等,但是这丝毫也没有减少它受欢迎的程度。对于一般的个人使用者和中小型企业来说,MySQL提供的功能已经绰绰有余,而且由于MySQL是开放源码软件,因此可以大大降低总体拥有成本。
目前Internet上流行的网站构架方式是LAMP(Linux+Apache+MySQL+PHP),即使用Linux作为 *** 作系统,Apache作为Web服务器,MySQL作为数据库,PHP作为服务器端脚本解释器。由于这四个软件都是遵循GPL的开放源码软件,因此使用这种方式不用花一分钱就可以建立起一个稳定、免费的网站系统。
[编辑本段]MySQL管理
可以使用命令行工具管理MySQL数据库(命令mysql 和 mysqladmin),也可以从MySQL的网站下载图形管理工具MySQL Administrator和MySQL Query Browser。
phpMyAdmin是由php写成的MySQL资料库系统管理程式,让管理者可用Web介面管理MySQL资料库。
phpMyBackupPro也是由PHP写成的,可以透过Web介面创建和管理数据库。它可以创建伪cronjobs,可以用来自动在某个时间或周期备份MySQL 数据库。
另外,还有其他的GUI管理工具,例如早先的mysql-front 以及 ems mysql manager,navicat 等等。
[编辑本段]Mysql存储引擎
MyISAM Mysql的默认数据库,最为常用。拥有较高的插入,查询速度,但不支持事务
InnoDB 事务型数据库的首选引擎,支持ACID事务,支持行级锁定
BDB 源自Berkeley DB,事务型数据库的另一种选择,支持COMMIT和ROLLBACK等其他事务特性
Memory 所有数据置于内存的存储引擎,拥有极高的插入,更新和查询效率。但是会占用和数据量成正比的内存空间。并且其内容会在Mysql重新启动时丢失
Merge 将一定数量的MyISAM表联合而成一个整体,在超大规模数据存储时很有用
Archive 非常适合存储大量的独立的,作为历史记录的数据。因为它们不经常被读取。Archive拥有高效的插入速度,但其对查询的支持相对较差
Federated 将不同的Mysql服务器联合起来,逻辑上组成一个完整的数据库。非常适合分布式应用
Cluster/NDB 高冗余的存储引擎,用多台数据机器联合提供服务以提高整体性能和安全性。适合数据量大,安全和性能要求高的应用
CSV 逻辑上由逗号分割数据的存储引擎
BlackHole 黑洞引擎,写入的任何数据都会消失,一般用于记录binlog做复制的中继
另外,Mysql的存储引擎接口定义良好。有兴趣的开发者通过阅读文档编写自己的存储引擎。
[编辑本段]Mysql最常见的应用架构
单点(Single),适合小规模应用
复制(Replication),适合中小规模应用
集群(Cluster),适合大规模应用
[编辑本段]mysql历史版本
MySQL公司目前在同时开发两个版本的软件,41版以及50版。41版本的代码已经发布并有望在8个月后公布最终代码。而50版本的最后产品将在6个月后发布。
MySQL41版本中增加了不少新的性能,包括对主键的更高速度的缓存,对子查询的更好的支持,以及应网络约会网站所要求的,基于地理信息的查询。
而其同步开发的50版本则把目标对准了企业用户,对于41版本中的所有新特性,50版本悉数收入囊中,并且独具以下特点:对外键的良好支持;系统自动报错机制以及对存储过程的充分支持。
Mysql现在现已开发出51版本支持视图!
[编辑本段]Mysql中文视频教学
左光华的mysql网络数据库开发教学视频
Mysql60的alpha版于2007年初发布,新版增加了对falcon存储引擎的支持。Falcon是Mysql社区自主开发的引擎,支持ACID特性事务,支持行锁,拥有高性能的并发性。Mysql AB公司想用Falcon替代已经非常流行的InnoDB引擎,因为拥有后者技术的InnoBase已经被竞争对手Oracle所收购。
2008年1月16日,Sun Microsystems宣布收购MySQL AB,出价约10亿美元现金包括期权。
[编辑本段]MySQL的基本命令
[ ]中的内容为可选项
--创建数据库
mysql> create database 数据库名称
--创建表
mysql> create table 表名 (
列的名字(id)类型(int(4))primary key(定义主键) auto_increment(描述 自增),
……,
);
--查看所有数据库
mysql> show databases 数据库名称;
--使用某个数据库
mysql> use database 数据库名称;
--查看所使用数据库下所有的表
mysql> show tables;
--显示表的属性结构
mysql> desc 表名;
--选择表中数据的显示
-- 代表选择所有列 ,
mysql> select from 表名 where id=[and name=?] [or name=];
mysql> select id,name from 表名order by 某一列的名称 desc(降序,asc为升序)
--删除表中的数据
mysql> delete from table where id=?[or name= (and name=)];
--删除表
mysql> drop table;
--删除数据库
mysql> drop database;
索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。
注:[1]索引不是万能的!索引可以加快数据检索 *** 作,但会使数据修改 *** 作变慢。每修改数据记录,索引就必须刷新一次。为了在某种程序上弥补这一缺陷,许多SQL命令都有一个DELAY_KEY_WRITE项。这个选项的作用是暂时制止 MySQL在该命令每插入一条新记录和每修改一条现有之后立刻对索引进行刷新,对索引的刷新将等到全部记录插入/修改完毕之后再进行。在需要把许多新记录插入某个数据表的场合,DELAY_KEY_WRITE选项的作用将非常明显。[2]另外,索引还会在硬盘上占用相当大的空间。因此应该只为最经常查询和最经常排序的数据列建立索引。注意,如果某个数据列包含许多重复的内容,为它建立索引就没有太大的实际效果。
从理论上讲,完全可以为数据表里的每个字段分别建一个索引,但MySQL把同一个数据表里的索引总数限制为16个。
1 InnoDB数据表的索引
与MyISAM数据表相比,在 InnoDB数据表上,索引对InnoDB数据表的重要性要在得多。在InnoDB数据表上,索引不仅会在搜索数据记录时发挥作用,还是数据行级锁定机制的苊、基础。"数据行级锁定"的意思是指在事务 *** 作的执行过程中锁定正在被处理的个别记录,不让其他用户进行访问。这种锁定将影响到(但不限于)SELECTLOCK IN SHARE MODE、SELECTFOR UPDATE命令以及INSERT、UPDATE和DELETE命令。
出于效率方面的考虑,InnoDB数据表的数据行级锁定实际发生在它们的索引上,而不是数据表自身上。显然,数据行级锁定机制只有在有关的数据表有一个合适的索引可供锁定的时候才能发挥效力。
2 限制
如果WEHERE子句的查询条件里有不等号(WHERE coloum != ),MySQL将无法使用索引。
类似地,如果WHERE子句的查询条件里使用了函数(WHERE DAY(column) = ),MySQL也将无法使用索引。
在JOIN *** 作中(需要从多个数据表提取数据时),MySQL只有在主键和外键的数据类型相同时才能使用索引。
如果WHERE子句的查询条件里使用比较 *** 作符LIKE和REGEXP,MySQL 只有在搜索模板的第一个字符不是通配符的情况下才能使用索引。比如说,如果查询条件是LIKE 'abc%',MySQL将使用索引;如果查询条件是LIKE '%abc',MySQL将不使用索引。
在ORDER BY *** 作中,MySQL只有在排序条件不是一个查询条件表达式的情况下才使用索引。(虽然如此,在涉及多个数据表查询里,即使有索引可用,那些索引在加快ORDER BY方面也没什么作用)
如果某个数据列里包含许多重复的值,就算为它建立了索引也不会有很好的效果。比如说,如果某个数据列里包含的净是些诸如"0/1"或"Y/N"等值,就没有必要为它创建一个索引。
普通索引、唯一索引和主索引
1 普通索引
普通索引(由关键字KEY或INDEX定义的索引)的唯一任务是加快对数据的访问速度。因此,应该只为那些最经常出现在查询条件(WHERE column = )或排序条件(ORDER BY column)中的数据列创建索引。只要有可能,就应该选择一个数据最整齐、最紧凑的数据列(如一个整数类型的数据列)来创建索引。
2 唯一索引
普通索引允许被索引的数据列包含重复的值。比如说,因为人有可能同名,所以同一个姓名在同一个"员工个人资料"数据表里可能出现两次或更多次。
如果能确定某个数据列将只包含彼此各不相同的值,在为这个数据列创建索引的时候就应该用关键字UNIQUE把它定义为一个唯一索引。这么做的好处:一是简化了MySQL对这个索引的管理工作,这个索引也因此而变得更有效率;二是 MySQL会在有新记录插入数据表时,自动检查新记录的这个字段的值是否已经在某个记录的这个字段里出现过了;如果是,MySQL将拒绝插入那条新记录。也就是说,唯一索引可以保证数据记录的唯一性。事实上,在许多场合,人们创建唯一索引的目的往往不是为了提高访问速度,而只是为了避免数据出现重复。
3 主索引
在前面已经反复多次强调过:必须为主键字段创建一个索引,这个索引就是所谓的"主索引"。主索引与唯一索引的唯一区别是:前者在定义时使用的关键字是PRIMARY而不是UNIQUE。
4 外键索引
如果为某个外键字段定义了一个外键约束条件,MySQL就会定义一个内部索引来帮助自己以最有效率的方式去管理和使用外键约束条件。
5 复合索引
索引可以覆盖多个数据列,如像INDEX(columnA, columnB)索引。这种索引的特点是MySQL可以有选择地使用一个这样的索引。如果查询 *** 作只需要用到columnA数据列上的一个索引,就可以使用复合索引INDEX(columnA, columnB)。不过,这种用法仅适用于在复合索引中排列在前的数据列组合。比如说,INDEX(A, B, C)可以当做A或(A, B)的索引来使用,但不能当做B、C或(B, C)的索引来使用。
6 索引的长度
在为CHAR和VARCHAR类型的数据列定义索引时,可以把索引的长度限制为一个给定的字符个数(这个数字必须小于这个字段所允许的最大字符个数)。这么做的好处是可以生成一个尺寸比较小、检索速度却比较快的索引文件。在绝大多数应用里,数据库中的字符串数据大都以各种各样的名字为主,把索引的长度设置为10~15个字符已经足以把搜索范围缩小到很少的几条数据记录了。
在为BLOB和TEXT类型的数据列创建索引时,必须对索引的长度做出限制;MySQL所允许的最大索引jlkjljkjlj全文索引
文本字段上的普通索引只能加快对出现在字段内容最前面的字符串(也就是字段内容开头的字符)进行检索 *** 作。如果字段里存放的是由几个、甚至是多个单词构成的较大段文字,普通索引就没什么作用了。这种检索往往以LIKE %word%的形式出现,这对MySQL来说很复杂,如果需要处理的数据量很大,响应时间就会很长。
这类场合正是全文索引(full-text index)可以大显身手的地方。在生成这种类型的索引时,MySQL将把在文本中出现的所有单词创建为一份清单,查询 *** 作将根据这份清单去检索有关的数据记录。全文索引即可以随数据表一同创建,也可以等日后有必要时再使用下面这条命令添加:
ALTER TABLE tablename ADD FULLTEXT(column1, column2)
有了全文索引,就可以用SELECT查询命令去检索那些包含着一个或多个给定单词的数据记录了。下面是这类查询命令的基本语法:
SELECT FROM tablename
WHERE MATCH(column1, column2) AGAINST('word1', 'word2', 'word3')
上面这条命令将把column1和column2字段里有word1、word2和word3的数据记录全部查询出来。
注解:InnoDB数据表不支持全文索引。
查询和索引的优化
只有当数据库里已经有了足够多的测试数据时,它的性能测试结果才有实际参考价值。如果在测试数据库里只有几百条数据记录,它们往往在执行完第一条查询命令之后就被全部加载到内存里,这将使后续的查询命令都执行得非常快--不管有没有使用索引。只有当数据库里的记录超过了1000条、数据总量也超过了MySQL服务器上的内存总量时,数据库的性能测试结果才有意义。
在不确定应该在哪些数据列上创建索引的时候,人们从EXPLAIN SELECT命令那里往往可以获得一些帮助。这其实只是简单地给一条普通的SELECT命令加一个EXPLAIN关键字作为前缀而已。有了这个关键字,MySQL将不是去执行那条SELECT命令,而是去对它进行分析。MySQL将以表格的形式把查询的执行过程和用到的索引(如果有的话)等信息列出来。
在EXPLAIN命令的输出结果里,第1列是从数据库读取的数据表的名字,它们按被读取的先后顺序排列。type列指定了本数据表与其它数据表之间的关联关系(JOIN)。在各种类型的关联关系当中,效率最高的是system,然后依次是const、eq_ref、ref、range、index和All(All的意思是:对应于上一级数据表里的每一条记录,这个数据表里的所有记录都必须被读取一遍--这种情况往往可以用一索引来避免)。
possible_keys数据列给出了MySQL在搜索数据记录时可选用的各个索引。key数据列是MySQL实际选用的索引,这个索引按字节计算的长度在key_len数据列里给出。比如说,对于一个INTEGER数据列的索引,这个字节长度将是4。如果用到了复合索引,在key_len数据列里还可以看到MySQL具体使用了它的哪些部分。作为一般规律,key_len数据列里的值越小越好(意思是更快)。
ref数据列给出了关联关系中另一个数据表里的数据列的名字。row数据列是MySQL在执行这个查询时预计会从这个数据表里读出的数据行的个数。row数据列里的所有数字的乘积可以让我们大致了解这个查询需要处理多少组合。
最后,extra数据列提供了与JOIN *** 作有关的更多信息,比如说,如果MySQL在执行这个查询时必须创建一个临时数据表,就会在extra列看到using temporary字样
[编辑本段]安装MySQL时候的注意事项
1、如果您是用MySQL+Apache,使用的又是FreeBSD网路 *** 作系统的话,安装时候你应按注意到FreeBSD的版本问题,在FreeBSD的30以下版本来说,MySQL Source内含的MIT-pthread运行是正常的,但在这版本以上,你必须使用native threads,也就是加入一个with-named-thread-libs=-lc_r的选项。
2、如果您在COMPILE过程中出了问题,请先检查你的gcc版本是否在281版本以上,gmake版本是否在375以上。
3、如果不是版本的问题,那可能是你的内存不足,请使用/configure -- with-low-memory来加入。
4、如果您要重新做你的configure,那么你可以键入rm configcache和make clean来清除记录。
5、我们一般把MySQL安装在/usr/local目录下,这是缺省值,您也可以按照你的需要设定你所安装的目录。
一、指代不同
1、web服务器:叫网页服务器或web服务器。WEB服务器也称为>
2、应用服务器:指通过各种协议把商业逻辑曝露给客户端的程序。
二、功能不同
1、web服务器:可以解析(handles)>
2、应用服务器:提供了访问商业逻辑的途径以供客户端应用程序使用。应用服务器使用此商业逻辑就像调用对象的一个方法一样。
三、特点不同
1、web服务器:传送(serves)页面使浏览器可以浏览。
2、应用服务器:应用程序服务器是通过很多协议来为应用程序提供(serves)商业逻辑(business logic)。
参考资料来源:百度百科-应用服务器
参考资料来源:百度百科-web server
以下内容转载自徐汉彬大牛的博客 亿级Web系统搭建——单机到分布式集群
当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题。为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制。在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决。
Web负载均衡
Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要。
负载均衡的策略有很多,我们从简单的讲起哈。
1 > 当用户发来请求的时候,Web服务器通过修改> 这个重定向非常容易实现,并且可以自定义各种策略。但是,它在大规模访问量下,性能不佳。而且,给用户的体验也不好,实际请求发生重定向,增加了网络延时。 2 反向代理负载均衡 反向代理服务的核心工作主要是转发> Nginx是一种非常灵活的反向代理软件,可以自由定制化转发策略,分配服务器流量的权重等。反向代理中,常见的一个问题,就是Web服务器存储的session数据,因为一般负载均衡的策略都是随机分配请求的。同一个登录用户的请求,无法保证一定分配到相同的Web机器上,会导致无法找到session的问题。 解决方案主要有两种: 1 配置反向代理的转发规则,让同一个用户的请求一定落到同一台机器上(通过分析cookie),复杂的转发规则将会消耗更多的CPU,也增加了代理服务器的负担。 2 将session这类的信息,专门用某个独立服务来存储,例如redis/memchache,这个方案是比较推荐的。 反向代理服务,也是可以开启缓存的,如果开启了,会增加反向代理的负担,需要谨慎使用。这种负载均衡策略实现和部署非常简单,而且性能表现也比较好。但是,它有“单点故障”的问题,如果挂了,会带来很多的麻烦。而且,到了后期Web服务器继续增加,它本身可能成为系统的瓶颈。 3 IP负载均衡 IP负载均衡服务是工作在网络层(修改IP)和传输层(修改端口,第四层),比起工作在应用层(第七层)性能要高出非常多。原理是,他是对IP层的数据包的IP地址和端口信息进行修改,达到负载均衡的目的。这种方式,也被称为“四层负载均衡”。常见的负载均衡方式,是LVS(Linux Virtual Server,Linux虚拟服务),通过IPVS(IP Virtual Server,IP虚拟服务)来实现。 在负载均衡服务器收到客户端的IP包的时候,会修改IP包的目标IP地址或端口,然后原封不动地投递到内部网络中,数据包会流入到实际Web服务器。实际服务器处理完成后,又会将数据包投递回给负载均衡服务器,它再修改目标IP地址为用户IP地址,最终回到客户端。 上述的方式叫LVS-NAT,除此之外,还有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之间都属于LVS的方式,但是有一定的区别,篇幅问题,不赘叙。 IP负载均衡的性能要高出Nginx的反向代理很多,它只处理到传输层为止的数据包,并不做进一步的组包,然后直接转发给实际服务器。不过,它的配置和搭建比较复杂。 4 DNS负载均衡 DNS(Domain Name System)负责域名解析的服务,域名url实际上是服务器的别名,实际映射是一个IP地址,解析过程,就是DNS完成域名到IP的映射。而一个域名是可以配置成对应多个IP的。因此,DNS也就可以作为负载均衡服务。 这种负载均衡策略,配置简单,性能极佳。但是,不能自由定义规则,而且,变更被映射的IP或者机器故障时很麻烦,还存在DNS生效延迟的问题。 我们常用的CDN(Content Delivery Network,内容分发网络)实现方式,其实就是在同一个域名映射为多IP的基础上更进一步,通过GSLB(Global Server Load Balance,全局负载均衡)按照指定规则映射域名的IP。一般情况下都是按照地理位置,将离用户近的IP返回给用户,减少网络传输中的路由节点之间的跳跃消耗。 “向上寻找”,实际过程是LDNS(Local DNS)先向根域名服务(Root Name Server)获取到顶级根的Name Server(例如com的),然后得到指定域名的授权DNS,然后再获得实际服务器IP。 CDN在Web系统中,一般情况下是用来解决大小较大的静态资源(html/Js/Css/等)的加载问题,让这些比较依赖网络下载的内容,尽可能离用户更近,提升用户体验。 例如,我访问了一张imgcachegtimgcn上的(腾讯的自建CDN,不使用qqcom域名的原因是防止> 这种方式,和前面的DNS负载均衡一样,不仅性能极佳,而且支持配置多种策略。但是,搭建和维护成本非常高。互联网一线公司,会自建CDN服务,中小型公司一般使用第三方提供的CDN。 Web系统的缓存机制的建立和优化 刚刚我们讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。 最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。 我们从最根本的数据存储开始看哈。 一、 MySQL数据库内部缓存使用 MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。 1 建立恰当的索引 最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等 *** 作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询 *** 作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。 2 数据库连接线程池缓存 如果,每一个数据库 *** 作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。 其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。 建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。 3 Innodb缓存设置(innodb_buffer_pool_size) innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。 4 分库/分表/分区。 MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等 *** 作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。 1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。 1 建立MySQL主从,从库作为备份 这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。 2 MySQL读写分离,主库写,从库读。 两台数据库做读写分离,主库负责写入类的 *** 作,从库负责读的 *** 作。并且,如果主库发生故障,仍然不影响读的 *** 作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。 3 主主互备。 两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。 不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。 三、 MySQL数据库机器之间的数据同步 每当我们解决一个问题,新的问题必然诞生在旧的解决方案上。当我们有多台MySQL,在业务高峰期,很可能出现两个库之间的数据有延迟的场景。并且,网络和机器负载等,也会影响数据同步的延迟。我们曾经遇到过,在日访问量接近1亿的特殊场景下,出现,从库数据需要很多天才能同步追上主库的数据。这种场景下,从库基本失去效用了。 于是,解决同步问题,就是我们下一步需要关注的点。 1 MySQL自带多线程同步 MySQL56开始支持主库和从库数据同步,走多线程。但是,限制也是比较明显的,只能以库为单位。MySQL数据同步是通过binlog日志,主库写入到binlog日志的 *** 作,是具有顺序的,尤其当SQL *** 作中含有对于表结构的修改等 *** 作,对于后续的SQL语句 *** 作是有影响的。因此,从库同步数据,必须走单进程。 2 自己实现解析binlog,多线程写入。 以数据库的表为单位,解析binlog多张表同时做数据同步。这样做的话,的确能够加快数据同步的效率,但是,如果表和表之间存在结构关系或者数据依赖的话,则同样存在写入顺序的问题。这种方式,可用于一些比较稳定并且相对独立的数据表。 国内一线互联网公司,大部分都是通过这种方式,来加快数据同步效率。还有更为激进的做法,是直接解析binlog,忽略以表为单位,直接写入。但是这种做法,实现复杂,使用范围就更受到限制,只能用于一些场景特殊的数据库中(没有表结构变更,表和表之间没有数据依赖等特殊表)。 实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。 1 页面静态化 用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。 在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。 2 单台内存缓存 通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value *** 作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。 内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。 3 内存缓存集群 当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。 Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。 对于使用缓存服务的客户端来说,这一切是透明的。 内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。 4 减少数据库“写” 上面的机制,都实现减少数据库的“读”的 *** 作,但是,写的 *** 作也是一个大的压力。写的 *** 作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。 先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。 除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Redundant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。 5 NoSQL存储 不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。 这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。 国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。 6 空节点查询问题 当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。 在我曾经的工作经历中,曾深受其害。因此,为了维护Web系统的稳定性,设计适当的空节点过滤机制,非常有必要。 我们当时采用的方式,就是设计一张简单的记录映射表。将存在的记录存储起来,放入到一台内存cache中,这样的话,如果还有空节点查询,则在缓存这一层就被阻挡了。 异地部署(地理分布式) 完成了上述架构建设之后,我们的系统是否就已经足够强大了呢?答案当然是否定的哈,优化是无极限的。Web系统虽然表面上看,似乎比较强大了,但是给予用户的体验却不一定是最好的。因为东北的同学,访问深圳的一个网站服务,他还是会感到一些网络距离上的慢。这个时候,我们就需要做异地部署,让Web系统离用户更近。 一、 核心集中与节点分散 有玩过大型网游的同学都会知道,网游是有很多个区的,一般都是按照地域来分,例如广东专区,北京专区。如果一个在广东的玩家,去北京专区玩,那么他会感觉明显比在广东专区卡。实际上,这些大区的名称就已经说明了,它的服务器所在地,所以,广东的玩家去连接地处北京的服务器,网络当然会比较慢。 当一个系统和服务足够大的时候,就必须开始考虑异地部署的问题了。让你的服务,尽可能离用户更近。我们前面已经提到了Web的静态资源,可以存放在CDN上,然后通过DNS/GSLB的方式,让静态资源的分散“全国各地”。但是,CDN只解决的静态资源的问题,没有解决后端庞大的系统服务还只集中在某个固定城市的问题。 这个时候,异地部署就开始了。异地部署一般遵循:核心集中,节点分散。 · 核心集中:实际部署过程中,总有一部分的数据和服务存在不可部署多套,或者部署多套成本巨大。而对于这些服务和数据,就仍然维持一套,而部署地点选择一个地域比较中心的地方,通过网络内部专线来和各个节点通讯。 · 节点分散:将一些服务部署为多套,分布在各个城市节点,让用户请求尽可能选择近的节点访问服务。 例如,我们选择在上海部署为核心节点,北京,深圳,武汉,上海为分散节点(上海自己本身也是一个分散节点)。我们的服务架构如图: 需要补充一下的是,上图中上海节点和核心节点是同处于一个机房的,其他分散节点各自独立机房。 节点容灾是指,某个节点如果发生故障时,我们需要建立一个机制去保证服务仍然可用。毫无疑问,这里比较常见的容灾方式,是切换到附近城市节点。假如系统的天津节点发生故障,那么我们就将网络流量切换到附近的北京节点上。考虑到负载均衡,可能需要同时将流量切换到附近的几个地域节点。另一方面,核心节点自身也是需要自己做好容灾和备份的,核心节点一旦故障,就会影响全国服务。 过载保护,指的是一个节点已经达到最大容量,无法继续接接受更多请求了,系统必须有一个保护的机制。一个服务已经满负载,还继续接受新的请求,结果很可能就是宕机,影响整个节点的服务,为了至少保障大部分用户的正常使用,过载保护是必要的。 解决过载保护,一般2个方向: · 拒绝服务,检测到满负载之后,就不再接受新的连接请求。例如网游登入中的排队。 · 分流到其他节点。这种的话,系统实现更为复杂,又涉及到负载均衡的问题。 小结 Web系统会随着访问规模的增长,渐渐地从1台服务器可以满足需求,一直成长为“庞然大物”的大集群。而这个Web系统变大的过程,实际上就是我们解决问题的过程。在不同的阶段,解决不同的问题,而新的问题又诞生在旧的解决方案之上。 系统的优化是没有极限的,软件和系统架构也一直在快速发展,新的方案解决了老的问题,同时也带来新的挑战。
5 DNS/GSLB负载均衡
二、 MySQL数据库多台服务搭建
四、 在Web服务器和数据库之间建立缓存
国内有很多大型网游,都是大致遵循上述架构。它们会把数据量不大的用户核心账号等放在核心节点,而大部分的网游数据,例如装备、任务等数据和服务放在地区节点里。当然,核心节点和地域节点之间,也有缓存机制。
二、 节点容灾和过载保护
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)