一、要准备一下几个工作:
1、主板上的显卡接口:先看看你的主板上的显卡接口是什么型号的?兼不兼容。
2、电源接口:电源上有没有给显卡单独的供电接口
3、主机原本功率:你要计算主机的整体功率是多少,够了够不够?
二、处理方式方法:
1、查看主板:首先用鲁大师查看一下主板是什么型号的,去官网看看这个型号的主板上显卡接口是不是PCIE-30的,因为GTX750TI显卡接口是PCIE-30的,N卡“2系列”至“5系列”是PCIE-20的接口,“6系列”至“20系列”是PCIE-30的接口,“30系列”是PCIE-40的接口。
2、查看显卡:GTX750TI显卡需要单独的显卡供电接口,功率也不一样,不同品牌不同版本的具体的帧数与功率都不一样,这个接口一般是4针或6针的,一般功率在60-80W左右
3、计算功率:
(1)CPU+CPU散热风扇+主板+内存+硬盘+机箱风扇=多少功率,用鲁大师查看配置参数,去官网上查看各个配置参数的功率。
(2)电源本身的功率转换率在80%左右,因此功率损耗为20%左右,250WX02=50W电源本身的功率损耗,250-50=200W电源实际最大输出功率
(3)电源还要预留10%的功率保护,200WX01=10W预留电源保护功率,200-10-190W安全的实际最大输出功率
(4)再用190W-主机功率=电源最大剩余功率。如果剩余功率够80W就可以安装GTX750TI
(5)一般情况下使用GTX750TI至少需要额定400W的电源
三、推荐直接吧电源换成额定400W的
1、迪兰恒进(Dataland)HD6950恒金2G 800/5000 2GB/256bit GDDR5 PCI-E 显卡2G超大显存!专业级杀手显卡!你的游戏准备好了吗!1999元,2、蓝宝石(Sapphire) HD 6950 1GB GDDR5白金版 800/5000MHz 1G/256BIT DDR5 PCI-E显卡 1799元。
3、影驰(Galaxy)GTX570黑将 732/3800 1280M/320bit DDR5 PCI-E 显卡超强劲俏品,数量有限,手慢后悔!1999
4、索泰(ZOTAC)GTX570毁灭者 732/3800 1280M/320bit GDDR5 PCI-E 显卡首款9英寸570+多接口+超大显存+独家增压风扇 2499
hd6950和gtx570基本属于同一等级的显卡,各有优劣,如果要性价比高,就是HD6950,毕竟同等性能要便宜400元,还能买到一线产品。
这四块显卡的推荐程度依次递减
电源不够用了,换一块吧。
安钛克(Antec)VP 550P 额定550W 120mm静音风扇 主动PFC 黑化外型设计电源 389元。
动力环境监控系统,可以对各种机房运行环境24小时监测,根据设备特点和实际环境条件,对门磁、红外人体检测、振动、门禁、视频、消防、继电器、风速、发电机、新风机、蓄电池、三相电量仪、市配电电压电流、精密空调、普通空调、UPS、温湿度、烟感、市电停电断电、漏水水浸等进行监测。并根据后台设置通过多种方式自动报警的智能监管设备。
动环监控系统的报警方式
对动力设备、机房环境、安保进行遥测采集,实时监视,并能记录保存处理相关数据,侦测故障,实现机房的安防系统、动力系统、环境系统智能监控维护管理。为确保机房安全,可进入机房的人员进行分级授权管理,无人值守、远程管控多个机房。
动力环境监控系统监控的数据1分钟记录一次,监控数据以曲线显示,历史记录数据报表也可以EXCEL格式导出下载,同时针对有特殊要求的机房环境,也能进行二次开发,调用服务器API接口开发或私有部署平台,可拓展。
1。中断/异常相量的装入和执行方式。中断和异常都是异步发生的事件,当该事件发生,系统将停止目前正在执行的代码转而执行事件响应的服务程序。而事件服务程序的入口点就是中断/异常向量所在的位置。arm的中断向量可以是0x0开始的低地址向量,也可以是在FFFF0000位置的高向量地址。winCE下使用高地址作为trap区,所以在CE下arm使用高地址向量。下面我们来了解一下中断/异常向量的安装和执行过程。
在kernelStart的过程中通过程序将如下代码复制到ffff0000的位置
VectorInstructions
ldr pc, [pc, #0x3E0-8] ; reset
ldr pc, [pc, #0x3E0-8] ; undefined instruction
ldr pc, [pc, #0x3E0-8] ; SVC
ldr pc, [pc, #0x3E0-8] ; Prefetch abort
ldr pc, [pc, #0x3E0-8] ; data abort
ldr pc, [pc, #0x3E0-8] ; unused vector location
ldr pc, [pc, #0x3E0-8] ; IRQ
ldr pc, [pc, #0x3E0-8] ; FIQ
而在ffff03e0的位置放上如下的数据,每一项(32bit)对应一个异常的跳转地址也就是winCE的异常/中断向量跳转表。该表项的内容就是发生异常后将要执行的服务程序的入口地址。具体如下。
VectorTable
DCD -1 ; reset
DCD UndefException ; undefined instruction
DCD SWIHandler ; SVC
DCD PrefetchAbort ; Prefetch abort
IF :DEF:ARMV4T :LOR: :DEF:ARMV4I
DCD OEMDataAbortHandler ; data abort
ELSE
DCD DataAbortHandler ; data abort
ENDIF
DCD -1 ; unused vector
DCD IRQHandler ; IRQ
DCD FIQHandler ; FIQ
在上面的这些代码/数据在内存空间上按照上述要求放置好以后,每次触发一个异常就自动运行到相应跳转表项所对应的地址执行。
2异常/中断服务程序
在arm下,由于有7种异常状态包括reset、Undef exception�oftware interrupt(swi)、Prefech Abort、DataAbort、IRQ、FIQ七种异常/中断。reset仅在复位时发生,其他6种都是在系统运行时发生。当任何一个异常发生并得到响应时,ARM 内核自动完成以下动作:
拷贝 CPSR 到 SPSR_<mode>
设置适当的 CPSR 位:
改变处理器状态进入 ARM 状态
改变处理器模式进入相应的异常模式
设置中断禁止位禁止相应中断
更新 LR_<mode>
设置 PC 到相应的异常向量
同时不管异常发生在ARM 还是Thumb 状态下,处理器都将自动进入ARM 状态。并且中断使能会自动被关闭。在这个时候由于部分通用寄存器是不同模式公用的,所以还需要保存这些将会被破坏的寄存器,待到处理完成的时候恢复这些寄存器被中断前的状态。另外在进入异常模式后,lr的值不一定就是我们所需恢复执行的位置,该位置受到异常类型和流水线误差的影响。在SWI模式下,LR就是返回值。在IRQ和FIQ中LR=LR-4,DataAbort下LR=LR-8;具体原因我们就不讨论了,有兴趣可以参看<基于ARM 的嵌入式程序开发要点>一文。下面分别对这些服务程序进行分析。
2-1undef exception服务程序
undef exception在执行到过非法的指令时产生,通常来模拟一些处理器不支持的功能,如浮点运算。简单说一下undef exception的过程:当当前指令为一条处理器不支持的指令时,处理器会自动动将该指令送交各协处理器(如MMU、FPU)处理,如果这些协处理器都无法识别这条指令的时候,就产生该异常。下面开始看相应的代码。
NESTED_ENTRY UndefException
sub lr, lr, #4 ; (lr) = address of undefined instruction
stmdb sp, {r0-r3, lr}
mov r1, #ID_UNDEF_INSTR
b CommonHandler
ENTRY_END UndefException
上面就是undef Exception的服务程序的入口处(已经将不参与编译和Thumb模式下的代码去掉),通过lr-=4计算出触发异常前的指令地址,同时保存r0-r3和lr入undef_exception stack用于最后恢复现场和取得异常指令本身,随后进入分发程序CommonHandlerCommonHandler是一个公共的异常服务程序,它通过不同的传入参数来进行处理,在这里mov r1,#ID_UNDEF_INSTR就是指定异常模式为undef Exception
2-2swi服务程序
按在ARM处理器的设计意图,系统软件的系统调用(SystemCalls)都是通过SWI指令完成。SWI相当于一个中断指令,不同的是SWI不是由外部中断源产生的,同时对应于SWI的异常向量位于0xc的位置或0xffff 000c的位置。也就是说当执行一个swi指令后,当前程序流中断,并转入0xc或0xffff000c执行,同时将CPSR_mode(当前程序状态寄存器)复制入SPSR_svc,转入SVC模式运行(使用特权模式的寄存器组)。也就是说系统通过执行SWI引发系统swi异常后切换入特权模式,系统调用功能号由swi xx后的xx决定,在运行完指定功能的代码后返回异常时的地址并恢复用户模式。我们看看,Wince中这部分代码是如何实现的。
DCD SWIHandler ; SVC<<--------------------------SWI入口点。
LEAF_ENTRY SWIHandler
IF {FALSE}
ENDIF
movs pc, lr
ENTRY_END SWIHandler
上面IF {FALSE}到ENDIF之间的代码在编译的时候是得不到编译的(事实上这部分代码是用于开发中调试使用的,针对特殊的硬件平台,一般与我们使用的硬件平台无关。所以下面摘抄的代码都不将不参与编译的内容写入),因此SWI服务程序就是一句话。movs pc, lr也就是直接回到SWI的地方,同时将SPSR_svc恢复到CPSR_mode中。这个过程中并没有进行在系统态执行特定系统指令序的工作,而仅仅是简单的返回,所以这不是系统调用,系统调用还需要根据调用号的不同运行指定的核心态代码。也就是说Wince的系统调用不是通过SWI来完成的,而是通过其他的异常处理手段达成的。
2-3 中断服务程序
IRQ(大概是最熟悉的异常方式了)在外部中断源在需要向处理器请求服务时发生,比如:时钟、外围器件FIFO上/下溢出、按键等等。IRQHandler就是中断的处理句柄,下面我们来具体看看。
----------------------------------------------------------------------------------
NESTED_ENTRY IRQHandler
sub lr, lr, #4 ; fix return address
stmfd sp!, {r0-r3, r12, lr} ;保存将要用到的寄存器和lr压入stack_irq
PROLOG_END
和上面一样,服务程序的入口处都是例行公事的计算返回位置以抵消流水线误差。再将要用到的寄存器压入STACK_IRQ,这样,准备工作就做完了。
; Test interlocked API status
;INTERLOCKED_START EQU USER_KPAGE+0x380
;INTERLOCKED_END EQU USER_KPAGE+0x400
sub r0, lr, #INTERLOCKED_START
cmp r0, #INTERLOCKED_END-INTERLOCKED_START
bllo CheckInterlockedRestart
上面这部分的内容是关于互锁的检测,由于如信号量这些同步手段都必须作为原子 *** 作进行,不允许打断。所以如果中断发生在互锁API的执行过程中,就需要专门的处理了。这些API都是放在INTERLOCKED_START和INTERLOCKED_END之间的,通过LR很容易就检查出是否是INTERLOCKEDXXX的过程中。这里并不关心互锁的实现就绕开这部分代码继续往下看,当作中断没有发生在interlock过程处理。
;
; CAREFUL! The stack frame is being altered here It's ok since
; the only routine relying on this was the Interlock Check Note that
; we re-push LR onto the stack so that the incoming argument area to
; OEMInterruptHandler will be correct
;
mrs r1, spsr ; (r1) = saved status reg
stmfd sp!, {r1} ; save SPSR onto the IRQ stack
mov r0,lr ; parameter to OEMInterruptHandler
msr cpsr_c, #SVC_MODE:OR:0x80 ; switch to supervisor mode w/IRQs disabled
stmfd sp!, {lr} ; save LR onto the SVC stack
stmfd sp!, {r0} ; save IRQ LR (in R0) onto the SVC stack (param)
;
; Now we call the OEM's interrupt handler code It is up to them to
; enable interrupts if they so desire We can't do it for them since
; there's only on interrupt and they haven't yet defined their nesting
;
CALL OEMInterruptHandler
ldmfd sp!, {r1} ; dummy pop (parameter)
ldmfd sp!, {lr} ; restore SVC LR from the SVC stack
msr cpsr_c, #IRQ_MODE:OR:0x80 ; switch back to IRQ mode w/IRQs disabled
; Restore the saved program status register from the stack
;
ldmfd sp!, {r1} ; restore IRQ SPSR from the IRQ stack
msr spsr, r1 ; (r1) = saved status reg
ldr lr, =KData ; (lr) = ptr to KDataStruct
cmp r0, #SYSINTR_RESCHED ;->时间片已到,进行调度
beq %F10
;SYSINTR_DEVICES EQU 8 ;是否设备中断,中断号是否有效
;SYSINTR_MAX_DEVICES EQU 32
sub r0, r0, #SYSINTR_DEVICES
cmp r0, #SYSINTR_MAX_DEVICES
;由此可以看出windowsCE的系统中断号最大支持32种从9-40
;其中第16号(24)被定义为SYSINTR_FIRMWARE
; If not a device request (and not SYSINTR_RESCHED)
ldrhsb r0, [lr, #bResched] ; (r0) = reschedule flag
bhs %F20 ; not a device request
;PendEvents EQU 0x340 ; offset 0x10sizeof(DWORD) of aInfo
;device 中断
ldr r2, [lr, #PendEvents] ; (r2) = pending interrupt event mask
mov r1, #1
orr r2, r2, r1, LSL r0 ; (r2) = new pending mask
str r2, [lr, #PendEvents] ; save it
;PendEvents = PendEvents|(1<<InterruptNO);
;
; mark reschedule needed
;情况1:r0=SYSINTR_RESCHED=1
;情况2: r0 =r0-SYSINTR_DEVICES>=SYSINTR_MAX_DEVICES
10 ldrb r0, [lr, #bResched] ; (r0) = reschedule flag
orr r0, r0, #1 ; set "reschedule needed bit"
strb r0, [lr, #bResched] ; update flag
20 mrs r1, spsr ; (r1) = saved status register value
and r1, r1, #0x1F ; (r1) = interrupted mode
cmp r1, #USER_MODE ; previously in user mode
cmpne r1, #SYSTEM_MODE ; if not, was it system mode
cmpeq r0, #1 ; user or system: is resched == 1
;if(SytemMode(spsr)||UserMode(spsr))&&r0!=1) return;
ldmnefd sp!, {r0-r3, r12, pc}^ ; can't reschedule right now so return
sub lr, lr, #4
ldmfd sp!, {r0-r3, r12}
stmdb lr, {r0-r3}
ldmfd sp!, {r0}
str r0, [lr] ; save resume address
mov r1, #ID_RESCHEDULE ; (r1) = exception ID
b CommonHandler
ENTRY_END IRQHandler
将spsr_irq压入IRQ堆栈保存。为调用OEMInterruptHandler作准备。(通常中断处理程序切换入系统态执行的目的在于避免使用终端模式下的寄存器,以方便是实现终端套嵌,这儿切入系统态时终端使能是关闭的,对于模态切换的原因我很迷惑。)OEMInterrupt需要在特权模式下执行,所以这里增加了切换入特权(SVC)模式的内容。紧接着将要用与传递参数的寄存器保存。设定传入参数,r0就可以开始调用OEMInterruptHandler了,这里的调用规则遵循windowsCE的规范而不是ATPCS的规范。具体过程参考ARM Parameter Passing@msdn。下面是函数原形。int OEMInterruptHandler(unsigned int ra);这里传入的参数就是上面的r0,事实上r0代表的参数ra并没有实质的作用在这里仅仅是形式上的实现一下而已,不过在这儿可以看到这个传入的ra实际上就是被中断的地址,如果需要知道被中断的位置可以通过ra来查询,而msdn里面说这个参数是保留的。返回的参数也是保存在r0中。其中返回值是系统中断类型。其中SYSINTR_RESCHED为系统时钟中断,每次时间片用完,该时钟便产生中断,并设置kData结构的bResched位,进入调度流程。如果中断类型是系统设备中断,那就设置PendEvents,待再次调度的时候处理中断。所以OEMInterruptHandler必须提前就要对中断进行响应对该中断源设置mask,防止在这过程中同一中断不停发生,导致中断饱和影响程序流的执行,直道中断处理真正完成后再次开放该中断的mask。在这里还可以看到的是系统设备中断号的范围是从SYSINTR_DEVICES到SYSINTR_MAX_DEVICES,也就是从9-40一共32个设备中断号,其中SYSINTR_FIRMWARE为8+16号,这个在编写OAL的中断服务程序时需要注意。如果当前的返回值既不是设备中断号又不是调度中断号,则读出当前调度标示,根据该标示进行判断是否调度/或返回如果是进入调度流程则恢复初始的寄存器状态,再按CommonHandler的要求保存寄存器。进入CommonHandler,等待分发。
2-3 FIQ服务程序
照例看看程序
NESTED_ENTRY FIQHandler
sub lr, lr, #4 ; fix return address
stmfd sp!, {r0-r3, r12, lr}
PROLOG_END
CALL OEMInterruptHandlerFIQ
ldmfd sp!, {r0-r3, r12, pc}^ ; restore regs & return for NOP
ENTRY_END FIQHandler
LTORG
FIQ是arm体系下特有的异常方式,其工作过程与IRQ类似都是由外部引脚触发但设计用途不同,IRQ用于通常的外部中断源的处理,是作为统一、通用的与外部器件交互的手段,而IRQ仅仅用于处理周期短同时又需要快速处理的场合其触发的事件源通常也来此外部FIQ中断。如:更换电池、数据传输这类工作。可想而知FIQ讲究的是快速,精干。因此FIQ服务程序通常没有分发,而仅仅是针对单一的工作进行处理保证处理的实时性。因此FIQ的处理相对IRQ就简单很多,直接调用
OEMInterruptHandlerFIQ进行处理后返回就完成了整个 FIQ服务程序。一般有可能是风扇有毛病散热不好。 自动关机的原因不多,一般如下:(1) *** 作系统过载,软件设定自动重启以达到优化的目的。
(2)电源API管理模块出现故障,测温探头失灵,因为一开机温度就有60度,可把保护温度调高。
(3)电源本身出现故障,当系统载荷过大致使虚拟内存据增,硬盘和CPU载荷加速
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)