全球定位系统在物流作业中的主要作用

全球定位系统在物流作业中的主要作用,第1张

GPS在物流运输行业中的重要作用
>GPS系统是属于美国国防部的,现在虽然为了人道主义开放给民用使用,而且接近免费,但是
GPS系统是广播型系统,不存在连接数问题,也不存在你连接服务器的问题
但事实上,他有一个类似服务器的东西,学名是时间同步器,他的作用是校准自己和格林尼治天的时钟,也就是世界标准时间绝对同步,然后再将他的时间对卫星同步
为了是让所有卫星时间都一致,如果不一致,那么就无法定位了
应为GPS广播下来的定位信息,就是一个时间数据包
所以,这个东西不叫服务器,但有类似的功能,作用是校准所有卫星的时间
其次,生产GPS终端的厂家不需要服务器,也没有必要,GPS系统和厂商无任何直接或间接的关系,目前美国开放使用,几乎是完全免费,如果某些厂家无计算芯片的生产能力,那么美国也可以卖给你,就是依靠这点收点钱的。
还有一个,GPS的24颗卫星,是一直用广播方式,比如200771日18:30:01秒这个时候,他发送一个数据包广播下来,这个数据包也包含了卫星的一个编号
那么如果有3颗卫星的信号被你接收到,由于你的终端也有一个被他们同步的时间以及出厂时已经同步的时间,那么计算信号到你这里之后的时间,以及卫星数据包中的时间
根据时间和电磁波传递的速度(光速)就可以判断到卫星距离你的剧烈
然后3颗卫星距离一起判断下来,就可以得到一个坐标,而收到的卫星颗数越多,计算就越准确,那么精度自然也就越高
正因为这种方式,所以不存在使用服务器的问题,也不存在连接数的问题,所以,你可以大概理解为,厂商等不需要服务器,我们也不需要连接到服务器
而美国国防部的那校准设备,你理解为服务器也可以,当他是一个钟也可以。

全球的网络服务器绝大部分都在美国,当然最大的(IBM所生产,现在最快的能达到1000万亿次/秒)也在美国,日本也有2~3台,中国上海有一台(曙光公司生产,曙光公司刚下线的“曙光5000A”计算能力达160万亿次/秒,世界排名第6~7位),欧洲也零散分布几台,印度也有一台(不过是DEL公司的)

32台。
这些服务器大部分来自美国、新加坡、日本和印度。美国居多,大部分被评为A级,代表行业最高水平,全球有32台超级服务器,标志着最大的区块链网络诞生。与往常一样,平躺采矿并囤积硬币,只有pi可以自救。

可以的。单独的手持GPS接收器价格昂贵,而且功能不强,扩展有限。笔记本电脑由于携带方便、功能强大,十分适合用于全球定位,我们只需要购买一个合适的GPS接收模块,再配合适当的软件及地图,就可以实现移动定位、路径选择、物体追踪等很多功能。

手持gps,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS系统,是继桌面GIS、WEBGIS之后又一新的技术热点。

移动定位、移动MIS、移动办公等越来越成为企业或个人的迫切需求,移动GIS就是其中的集中代表,使得随时随地获取信息变得轻松自如。

它包括空间数据库、GIS服务器、瓦片服务器、GIS客户端等。在移动互联网、WEB服务的大环境下,为了便于数据和应用的聚合集成。

迫切需要行业标准来统一接口,实现各个系统或模块的互联互通,OGC标准作为GIS领域通用标准被广泛采纳,并在众多GIS平台上实现。

超宽带技术是近年来新兴一项全新的、与传统通信技术有极大差异的通信无线新技术。UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。

UWB定位技术在不同的应用环境中能够实现不同的定位业务需求(3D/2D/1D/区域定位),精确定位人员、车辆、资产,并在定位基础上实现轨迹追踪、区域报警、摄像联动等延伸功能。

TDoA定位

UWB定位系统大致分为位置感知层、网络传输层和定位应用层,主要包括:定位引擎服务器、智能终端、POE交换机、UWB基站、UWB标签、UWB模块、软件接口等。

0维室内定位常用于存在性检测,常见的应用场景是长时间监测人员是否在一个房间内,0维室内定位系统硬件方面通常只需要一个UWB基站和UWB标签即可实现,UWB标签和基站之间相互通信,再通过和后台的交互实现人员的存在性监测、报警等功能;

一维定位应用的原理就是测距应用,能够知道定位目标标签的相对位置,适合隧道、管道、管井、矿井等多种定位精度要求不高的场景,精度在03米左右;详见后文TWR定位介绍;

二维定位需要确定空间的X/Y坐标,分为两种情况;一种是通过标签离基站的距离,计算标签的位置;还有一种是通过三个以上的基站,确定区域内标签的位置,能够准确得知定位目标标签的位置及行为轨迹;

三维定位需要知道定位设备的XYZ三维坐标,在基站架构的时候,需要特别拉开Z轴的高度差,以确保在Z轴上的精确度。若用测距的方式,三个基站就可以完成三维定位,用TDOA的方式,则必须要四个以上基站才能完成。能够精确判断标签位置,以及滞留时间。

2TWR定位

UWB TWR主动定位系统包含UWB定位基站、UWB定位标签和POE交换机、服务器和终端显示设备。可在客户场地搭建高精度展示环境,进行快速实地高精度UWB定位演示;也可以将此定位系统套件使用到未来实际项目中。

TWR被动定位系统与TDoA类似,UWB标签与UWB基站的实时测距,通过UWB基站上传距离信息给到后台复位器,再由服务器来解析UWB标签所在位置信息。

中国科学院 于1949年11月在北京成立,是国家科学技术方面最高学术机构和全国自然科学与高新技术综合研究发展中心。 中国科学院包括5个学部(数理学部、化学部、生物学部、地学部、技术科学部),以及11个分院(沈阳、长春、上海、南京、武汉、广州、成都、昆明、西安、兰州、新疆)、84个研究院所、1所大学、2所学院、4个文献情报中心、3个技术支撑机构和2个新闻出版单位,分布在全国20多个省(市)。此外,还投资兴办了430余家科技型企业(含转制单位),涉及11个行业,其中包括8家上市公司。 学部 中国科学院学部(以下简称“学部”)成立于1955年,是国家在科学技术方面的最高咨询机构,负责对国家科学技术发展规划、计划和重大科学技术决策提供咨询,对国家经济建设和社会发展中的重大科学技术问题提出研究报告,对学科发展战略和中长期目标提出建议,对重要研究领域和研究机构的学术问题进行评议和指导。 学部由中国科学院院士组成。中国科学院院士从国内外最优秀的科学家中选出,每两年增选一次,目前有院士687人,其中外籍院士41人。学部的最高权力机构是全体院士大会,其常设领导机构是学部主席团,由中国科学院院长担任执行主席。学部现设有数学物理学部、化学部、生物学部、地学部和技术科学部五个学部。 学部成立初期,即组织院士参与制定了对我国科技事业发展具有深远影响的《十二年科学技术发展远景规划》。1986年,在89位院士建议下,中国科学院建立了面向全国的自然科学基金,在此基础上成立了国家自然科学基金委员会。同年3月,王大珩、王淦昌、陈芳允、杨嘉墀4位院士联名建议加强中国高科技的研究和发展,形成了国家高技术研究发展计划。 1993年,在王大珩、师昌绪、张光斗、张维、罗沛霖、侯祥麟等院士的倡议下,成立了中国工程院。 近年来,学部围绕西部开发、国家安全、人口与社会可持续发展、高技术产业发展、科学教育、学科发展战略等问题,提出了一系列咨询报告报送国务院和政府有关部门,为国家制定相关政策提供了重要参考依据。 基础科学研究 在基础科学研究领域, 中国科学院已逐步建立和发展了数学、物理学、化学、力学、天文学、生命科学、地学与环境等自然科学的基础学科。在数学、物理学、化学、力学和天文学领域,现有16个研究机构,其中有10个研究所、2个研究院、3个天文台和1个授时中心,拥有近9000人的科研及管理队伍。中国科技大学、中国科学院研究生院也是基础科学方面的重要研究力量。目前,在这些研究机构中建设有基础科学领域的国家实验室4个、国家重点实验室11个、院重点实验室19个。在知识创新工程试点工作中,先后启动了国际量子结构、核心数学、聚合物科学与材料、交叉科学理论物理和复杂系统研究团队。研究团队主要围绕重大科学前沿问题,开展具有原始创新性的研究工作,通过团队的带动作用,培养出在中国本土成长的一流科学家。为推动国内纳米科技研究工作,在中国科学院纳米科技中心的基础上,联合北京大学、清华大学等高校成立国家纳米科技中心。 中国科学院已经建成了北京正负电子对撞机(BEPC)、兰州重离子加速(HIRFL)、合肥同步辐射加速、托卡马克和激光聚变装置、长波授时台等重大科学工程装置,以及216米光学望远镜、多通道太阳磁场望远镜、米波综合孔径射电望远镜等大型天文观测设备。目前正在建设的大科学装置有兰州重离子加速冷却储存环、大型非圆截面超导托卡马克装置、大天区面积多目标光纤光谱天文望远镜和北京正负电子对撞机(含谱仪)重大改造工程等。 在基础科学研究领域,中国科学院先后取得了许多重大的科研成果,如数学定理的机器证明、哈密尔顿系统的辛几何算法、τ轻子质量精确测量、新核素合成、超新星观测、高温超导、碳纳米管的制备和应用、非线性光学晶体、过渡金属原子簇结构和性质以及金属有机化学等等。同时,为我国信息、能源、材料、资源、农业、医药、空间和国家安全等方面的研究和发展以及形成科技战略储备做出了重要贡献。数学与系统科学研究院吴文俊院士、半导体研究所黄昆院士分别荣获2000年度和2001年度国家最高科学技术奖,中国科学院地质与地球物理研究所院士刘东生荣获2003年度,2004年度空缺,中国科学院大气物理研究所院士叶笃正荣获2005年度,中国科学院遗传与发育生物学研究所院士李振声荣获2006年度国家最高科学技术奖。 生命科学与生物技术 在生命科学与生物技术研究领域,中国科学院现有23个研究所和研究中心、26个国家和院重点实验室、12个植物园、22个标本馆、9个典型培养物保藏库和11个野外生态学研究台站,拥有6800多人的科研及管理队伍。 在北京的7个研究所以农业高技术和生态环境研究为主要方向;由7个研究所(中心)组成的上海生命科学研究院以人口与健康为主攻方向;在西南的4个研究所组成了西南生物资源与生物多样性保护研究发展基地,主要研究生物多样性保护和生物资源可持续利用;在湖北的3个研究所重点研究水生生物学和病毒学及其生物技术;另外在青海和广州各有1个研究所,分别进行青藏高原生物学和植物学及退化生态学的相关研究。 在生命科学领域,中国科学院取得了许多重要成果。在世界上首次人工合成了牛胰岛素结晶和酵母丙氨酸转移核糖核酸;完成了366卷中国植物志、动物志和孢子植物志的编研;创建了最完整的中国蕨类植物分类系统;参与了“人类基因组计划”并完成了1%的测序任务;完成了水稻基因组框架图和粳稻4号染色体精确测序。蝗虫生态学与治理、恢复生态学、害虫防治、作物品种选育、水产养殖、创新药物等的研究为国家的生态安全、农业经济发展和人口与健康做出了重要的贡献。 在生物技术研究方面,取得了用二步发酵法生产Vc中间体、黑曲糖化酶酶活的提高及其在工业上的应用、乙型肝炎病毒基因工程疫苗、基因工程人干扰素超高表达、转基因鱼和体细胞克隆技术牛等重要研究成果,有些已实现产业化。在新药研究方面,共创制新药50多种。解毒药二巯基丁二酸是我国首次被美国仿制、经FDA批准上市的药物;抗疟疾药蒿甲醚是我国出口的唯一首创新药,1995年被列入世界药典;治疗心血管疾病的“地奥心血康”等药品年产值已达14亿元人民币。 资源环境科学与技术 在资源环境领域,中国科学院现有24个研究所、11个国家重点实验室、14个院重点实验室和47个重点建设的野外观测试验台站。野外台站分属于生态系统研究、大气本底观测、地磁台链、特殊环境与灾害监测等四大网络,成为具有国际水平的长久性科学观测研究基地。目前,资源环境领域拥有近9000人的科研及管理队伍,已经发展成为一个比较完整的、学科较为齐全的综合研究体系。 资源环境科学领域涉及固体地球科学、大气科学、海洋科学、生态学、环境科学、地理科学与资源、遥感、农业等多个重点学科。多年来,广大科技人员积极面向国家需求,勇于攀登科学高峰,在地球早期生命研究、进化古生物学研究、国际界线层型研究,以及各门类化石总结等方面均取得重要成果。通过在东亚季风环境系统、黄土、岩溶、冰芯、湖泊、古海洋学和人类活动对陆地生态系统影响以及海洋生态动力学等方面开展古环境变化和过程研究,重建了东亚自然环境演化规律;积极而卓有成效地推动了全球变化研究。陆相生油理论、层控矿床地球化学、东亚大气环流和东亚季风环境污染机理、青藏高原隆升及环境效应等研究工作,取得了理论上的重大突破。根据地域分异、地表水热平衡、元素迁移转化和生态环境特征,完成了各种自然区划、生态环境区划、农业和经济区划,在国民经济建设中得到了广泛的应用。在沙漠化防治、水土流失治理、中低产田改造、退化生态系统恢复与重建、环境污染控制和海水养殖、海洋药物等方面,提供了一批实用的技术和模式。遥感技术、地理信息系统技术、全球定位系统技术所取得的研究成果和信息基础设施的建设,使地球信息科学在政府决策和科技、经济、社会发展中发挥更为重要的作用。 高技术研究与发展 在高技术研究与发展领域,中国科学院共有28个研究所、2个技术支撑单位、1个国家实验室、43个国家重点实验室和院重点实验室,14600余名科研技术人员。主要工作涉及信息技术、先进制造、光电科技、材料、能源、交通、化学工程和空间科学技术等领域,曾为我国计算机、激光、合成橡胶、“两d一星”等研究做出过重大贡献。近几年来,在高技术研究与发展领域进一步加强了基础性研究和高技术前沿探索,不断增强自主创新能力。同时,为了强化研究所的科技成果转化能力和工业配套能力,已建成31个国家工程中心和院工程中心,并按现代企业制度管理,形成一个高技术企业群体。 中国科学院高技术研究与发展工作的任务是:从事关系到我国经济发展、国防建设与社会进步的基础性、战略性、前瞻性高新技术研究;承担国家重大项目中的关键技术研究开发工作,解决国家急需的重大科技问题;提高我国高技术自主创新能力,不断促进高技术产业发展。在提高我国高技术的国际竞争能力、促进我国高技术产业发展、解决我国经济发展、国防建设和社会可持续发展中的重大科学技术问题等方面,起到有显示度的和不可替代的作用。 各研究所积极承担国家重点基础研究计划、国家高技术研究发展计划、国家重点科技攻关计划等国家重大科技任务,加强与企业的合作,取得了一系列重大成果。工业机器人产业化、实践五号科学实验卫星和风云系列气象卫星的有效载荷、小型化超强超短激光、纳米材料、有机合成化学、40万千瓦蒸发冷却电机曙光3000超级服务器、“龙芯”高性能CPU芯片等大批创新研究成果,为我国信息技术和自动化、化工与材料、能源等领域的科技发展写下了新的篇章。 高技术产业化 在高技术产业化方面,中国科学院按照新时期办院方针,坚持面向国家战略需求,加强关键技术创新与集成,加强科技创新成果的转化,为我国产业结构调整、保持经济快速增长以及社会可持续发展做出了直接贡献。同时,积极建立高技术产业发展平台,进一步促进科技成果转化的市场化、社会化和企业化,进一步促进高技术产业的发展。 资兴办的企业,分布在11个行业,其中已经认定的高新技术企业有219家。院直接投资的企业(含首批转制单位)有82家,如著名的联想集团控股公司等;研究所投资的企业有356家,如在科技成果转化方面表现突出的成都地奥制药集团有限公司、上海中科合臣化学公司等。目前,全院已有8家院、所投资的公司在境内外上市。在31个国家和院级工程研究中心中,有14个已经完成公司制改造。此外,在建和筹建中的科技产业园区有21个。 中国科学院依法设立了“中国科学院国有资产经营公司”,代表院对院直接投资的全资、控股、参股企业行使出资人权利,并对经营性国有资产承担相应的保值增值责任。 2001年度,院、所投资企业营业收入43454亿元;利税总额4299亿元;创汇额294亿美元;所有者权益11722亿元;从业人员约524万人,其中为社会提供的就业机会超过4万人。 中国科学院积极推进科技与经济的有效结合,十分重视与省市的技术经济合作,近年来陆续与23个省、市、自治区及有关地(市)签署了全面合作协议。同时,多渠道、多途径、多层面地推进与产业部门以及大中型企业的合作,在烟草、纺织、石化、机电等行业加强技术合作,并与中国海洋石油公司、大庆油田、上海电机集团、上海广电集团等大型企业集团建立了长期合作关系。中国科学院与国家经贸委、教育部共同组织实施了“产学研联合开发工程”,与3000多家企业建立了多种合作关系。为加强与地方、行业、企业的合作,向全国29个省(市)的170个地(市)、县和一批企业选派了科技副职,同时接收地方和企业选派的挂职干部在院短期工作。 据不完全统计,院与地方合作项目在2001年度为地方形成销售收入152亿元人民币,利税33亿元人民币。另外,创造社会效益折合114亿元人民币。 队伍建设与人才培养 中国科学院拥有一支高水平的科技人才队伍,现有中国科学院院士256人,占中国科学院院士总数的398%;中国工程院院士53人,占中国工程院院士总数的86%。全院有专业技术人员37万人,其中高级专业技术人员14万人、中级专业技术人员14万人,初级专业技术人员075万人。全院在读研究生2万余人,在站博士后1千余人。 20世纪50年代,一大批海内外优秀人才聚集在中国科学院,为“两d一星”的研制做出了历史性贡献。80年代开始,为培育中青年科技骨干,解决人才断层问题,中国科学院在国内率先推出了一系列新举措。90年代初推出了“百人计划”,以吸引和培养优秀学科带头人,全院人才队伍结构得到调整和优化。实施知识创新工程试点工作以来,在全院推行了以队伍结构优化为核心的人员总量控制、建立与国际接轨的新型用人制度和“三元”结构分配制度等人事制度改革,为中国科学院的改革与发展奠定了良好的基础。1999年和2001年分别启动了“引进国外杰出人才计划” 与“海外知名学者计划”,加大了对国外优秀青年学者的吸引力度。目前,全院知识创新工程的科技岗位中,45岁以下科技人员已占科技人员总数的75%以上,全院人才队伍呈现出人员精干、结构合理、创新能力不断提高,国际、国内地位不断提升的良好态势。 为保持人才队伍的创新活力和竞争能力,中国科学院自1978年开始选派优秀的科技人员和管理骨干出国深造,迄今已公派16万名访问学者、研究生到40多个国家和地区留学和访问进修,目前已有近1万余人学成回国工作。同时,在院内初步形成了以中国科学院管理干部学院为龙头,以京外若干基地为依托的继续教育网络。 为国家培养和输送高层次科技人才,是中国科学院对国家和社会的一个重要贡献。中国科学院于1951年与高校一起开始实行统一计划招收研究生制度,1977年率先恢复因“文革”而中断的研究生招生,1978年经党中央批准成立了我国第一个研究生院——中国科技大学研究生院。50年来,中国科学院为国家培养和输送了7万余名研究生,其中包括中国第一位理学博士、第一位工学博士、第一位女博士和第一位双学位博士。2001年,经教育部和国务院学位委员会批准,中国科学院研究生院正式成立,现有授予博士学位的学科专业基本覆盖了理科所有的学科领域,同时还具有相当数量的工程技术学科和一定数量的人文学科的博士学位授予点,全院形成了一个以北京为主体、联系和覆盖全院的研究生教育网络。 中国科学技术大学是中国科学院于1958年创办、以前沿科学和高新技术为主、兼有以科技为背景的管理和人文学科的综合性全国重点大学。建校40多年来,共为国家培养了近5万名高层次人才。中国科技大学也是首批获准进入国家“211工程”建设和国家重点建设世界知名的高水平大学之一。 国际合作与交流 中国科学院将国际科技合作作为促进现代科技发展的必要条件,已同全世界60多个国家和地区的科研机构、高等院校、国际组织和企业建立了合作交流关系,签署了院级合作协议70余个,开展了多层次、多形式、全方位的国际合作。目前,国际科技合作人员交流每年逾万人次,全院有380多位科学家在国际组织中担任不同层次的领导职务,并聘请了140多位外国专家学者担任院、所的名誉职务和客座教授。 国际合作工作以围绕国家、院重大项目开展实质性合作为重点,取得了数百项成果,其中北京正负电子对撞机的建设、沙尘暴的防治、1%人类基因组测序、中日大学群合作、德国马普青年科学家小组、中法信息自动化与应用数学实验室、英国石油国际公司中国中心、中俄空间天气联合研究中心等项目成绩显著,在全院科技工作中发挥了重要作用。此外,中国科学院成功地举办了一系列重大国际会议,加强了与第三世界科学院等国际组织的合作与交流,吸纳了外资外贷 ,扩大了在国际科技界的影响,同时也加速了人才培养。 近几年,中国科学院在知识创新工程试点中,通过国际合作与交流,在促进基础研究和高技术创新、为国民经济建设与社会发展服务等方面做出了贡献。 科学出版与文献信息 文献服务与出版是科研工作中的重要基础和支撑条件,也是提升科研创新活力的基本要素。经过50多年的建设,中国科学院依托现代信息技术已初步形成了以院文献情报中心为中心,以上海、兰州、武汉、成都四个地区学科文献情报中心为分中心,连接全院相关研究机构图书信息室以及国内外主要大型图书馆和信息机构,立足全院、面向全国、开放互联的网络化科技文献情报服务体系。其文献收藏总量达3300多万册(件),已建成国内最具规模的自然科学基础学科和高技术文献收藏体系,并建成了包括多种联合目录、文摘杂志和文献数据库的自然科学文献检索体系和国际联机检索终端,每年向院内外数十万用户提供服务。两三年内,将基本建设成为我国在自然科学领域最具规模和地位的、面向全社会的国家科学数字图书馆。 在出版事业方面,中国科学院也已初步形成以科学出版社为中心的科学出版集团和以科学时报为主体的报业体系,出版范围从传统纸质出版物到现代数字化电子出版物,从学术专著、科普著作到各种杂志、报刊。依托中国科学院一流研究人员的高水平科研工作,面向全国乃至全世界,它们每年出版上千种包括学术专著和科普著作在内的科技图书和电子出版物,以及290多种科技期刊,其中不乏在学术上具有国际地位和影响力的知名出版物。文献服务和出版工作的紧密结合和协同发展,将为中国科学院成为国家知识库、思想库和人才库构筑起信息化、数字化、网络化的平台,并成为国家信息基础设施的重要组成部分。
院组织高等自考教育,实行免试入学,根据北京市高等教育自学ks计划和教材,采用全日制大学的教学形式和方法,每门可程参与由国家统一组织的考试。成绩合格,由北京市高等教育自学ks。成绩合格,有北京市高等教育自学ks委员会和主考院校联合颁发毕业z书,国家承认学历, 并获得国际认可

巨型计算机就是超级计算机!通常是指由数百数千甚至更多的处理器(机)组成的、能计算普通PC机和服务器不能完成的大型复杂课题的计算机。为了帮助大家更好的理解超级计算机的运算速度我们把普通计算机的运算速度比做成人的走路速度,那么超级计算机就达到了火箭的速度。在这样的运算速度前提下,人们可以通过数值模拟来预测和解释以前无法实验的自然现象。

卫星定位全称为全球卫星定位系统,可以为公路、铁路、空中和海上的交通运输工具提供导航定位服务。它能够军民两用,战略作用与商业利益并举。
全球卫星定位系统包括绕地球运行的多颗卫星,能连续发射一定频率的无线电信号。只要持有便携式信号接收仪,则无论身处陆地、海上还是空中,都能收到卫星发出的特定信号。接收仪中的电脑选取几颗卫星发出的信号进行分析,就能确定接收仪持有者的位置。
全球卫星定位系统还具有其他多种用途,如科学家可以用它来监测地壳的微小移动从而帮助预报地震;测绘人员利用它来确定地面边界;汽车司机在迷途时通过它能找到方向;军队依靠它来保证正确的前进路线等。
目前美国拥有的GPS全球卫星定位系统在技术上遥遥领先。美国的GPS包括绕地球运行的24颗卫星,它们均匀地分布在6个轨道上。每颗卫星距地面约17万公里。
目前,美国的全球卫星定位系统为它的经销公司每年创造的销售额高达80亿欧元。美国联邦航空局预计,随着卫星定位及导航应用的日渐广泛,该行业的销售规模在未来两到三年中还将再翻一番。
GPS是“Global Positioning System"即“全球定位系统”的简称。该系统原是美国国防部为
其星球大战计划投资100多亿美元而建立的。 其作用是为美军方在全球的舰船、飞机导航并指挥陆
军作战。在海湾战争中,涌现了大量高科技装备,而GPS全球卫星定位系统则是使用最广泛的一种。
人们普遍认为是GPS技术在整个海湾战争中充分显示了威力,起了至关重要的作用,从而赢得了战
争的胜利。
GPS全球定位系统是一项工程浩繁、耗资巨大的工程, 被称为继阿波罗飞船登月、航天飞机之
后的第三大空间工程。海湾战争期间,GPS系统尚未完全建成, 初步使用已显神威。随着1993年GPS
太空卫星网的完全建成, 其应用领域不断扩大。而且美国1994年宣布在10年内向全世界免费提供
GPS全球定位系统的使用权。 使世界各国都在争相利用这一系统。
前苏联早在1982年就开始建立自己的全球卫星定位系统。后来,俄罗斯继续执行这一系统工程
计划,到1995年已完成建成。目前这套全球卫星导航系统只由俄罗斯控制使用,未向全世界提供服
务。欧洲联盟考虑到全球卫星定位导航系统的应用前景,也打算建立他们自己的全球卫星定位导航
系统。目前德俄已联合生产了可以同时接收美国GPS和俄国Glonass信号的卫星定位接收器。当前世
界各国对全球卫星定位导航这一高新技术都非常重视,认为其对导航定位和大地勘测技术是一场革
命,其民用潜力相当巨大,经济效益相当可观。
GPS是美国国防部发射的24颗卫星组成的全球定位、导航及授时系统。这24 颗卫星分布在高度
为2万公里的6个轨道上绕地球飞行。每条轨道上拥有4颗卫星, 在地球上任何一点,任何时刻都可
以同时接受到来自4颗卫星的信号。也就是说GPS的卫星所发射的空间轨道信息覆盖着整个地球表面。
GPS卫星定位系统由地面控制站、GPS卫星网和GPS接收机三部分组成。 地面主控站实施对GPS
卫星的轨道控制及参数修正。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12766703.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存