浪潮集团:服务器国内出货量市场占比11.3%,全球第一

浪潮集团:服务器国内出货量市场占比11.3%,全球第一,第1张

2020GIDC全球互联网数据大会在深圳正式召开,会议从“数据经济”的角度出发,针对“新基建”、“边缘计算”、“容器技术”、“AI”、“RPA”等主流的技术趋势进行解读,众多嘉宾及企业分享了其在平台及技术生态搭建方面的见解与思考。

浪潮集团广东公司首席技术官陈逸聪出席大会,并以“突破计算边界,开放成就未来”为题,分享了其对智慧计算、数据中心等方面的看法。

陈逸聪表示,现在无论是互联网服务还是数据服务、数据中心运行等都和计算息息相关,而随着5G、AI、大数据时代的到来,计算的定义不仅仅局限于原有的传统的去中心化计算,而是与智慧挂钩,与此同时新型业务对计算力和数据中心的要求日益提高, 那么不局限于原有的定义,突破计算边界、推动形成开放计算生态成为亟需解决的行业核心要点所在。

他强调,智慧计算正源源不断地改变着我们现在和未来的生产生活方式,从日常生活到企业的数字化转型都留下了深刻的影响, 简言之,计算力就是生产力。

陈逸聪讲到,传统的数据中心就是部署一个机房或者一个机柜的设备,便能解决计算的需求,而随着互联网业务的发展和数据的扩增,加之2020年初爆发的疫情影响,使原来很多线下的活动转而在线上举行。 线上业务的发展意味着数据中心的规模变得越来越庞大和承载的设备越来越多,也意味着对后端的技术支撑和计算力提了新的要求。

此外在今年,国家发改委提出了在全国布局10个左右区域级数据中心集群和智能计算中心的规划,粤港澳大湾区亦规划一个数据中心集群,新型数据中心的建设成为关注的焦点所在。从几年前数据中心的规模扩大到现在超大型数据中心的承载计算设备的数量增多的变化来看,超大规模数据中心的建设一直在快速增长,并且大型数据中心发展带来对应用支撑的复杂度和对数据中心的管理都有所提高。

陈逸聪表示,原来的服务器、存储、网络到计算机 *** 作系统等数据中心建设所需的设备,对于其厂商、设备品牌是谁并不是需要过度关注的问题, 而随着大数据越来越聚集、对于云统一的认知愈发引起行业关注与思考。 云统一的话能否把各个服务器管起来,目前国内的包括阿里云、腾讯云都在进行,那么对于统一管理的标准如何制定亦有待商榷。

数据中心最大的开销是电力成本,目前全球所有数据中心,一年的总能耗数据显示是3000亿度,转换成发电站的发电来看的话,相当于30座大型核电站的一年发电量。如果在深圳建设一个超大型数据中心集群服务整个粤港澳大湾区,同时配套建设三个核电站做电力支撑并不现实,这必然会对新型超大型数据中心的绿色节能、高效运维有更高要求。

那么如何解决这一难题?陈逸聪举了一个例子,他讲到,原来服务器即物理机、现在已逐步服务的云计算均被业内所接受。云可以即开即用,但是亦有一些性能上的损耗;物理机最快数小时交付,所有的物理机是实时开通,即开即用,隔离性强,稳定性强,但相比云计算能耗也最高。

从另一个角度而言,超高的能耗严重影响数据中心业务的快速发展,中国因为互联网发展迅速,我们的数据中心建设也在世界的前列,一年下来年耗电量是在一千亿度,相当于整个三峡大坝一年的发电量,能耗控制产生了对一些新技术的要求。同时, 打破物理边界,实现资源池化亦是数据中心发展追求的方向,以便提高计算资源利用率,实现更高性能和更低TCO以及高效运维。

浪潮通过L11级一体化交付,使交付更快更便捷。在2019年春节前三周完成了突发需求一万台供货保障,从收到需求到交付完毕,仅用时两周。 曾经创造了一天8个小时之内物理地上架1万台服务器到数据中心的交付记录,保障了客户实现全球央视春晚观众红包互动的庞大业务需求。 此外,浪潮还通过开放计算加速智算中心建设,推动 社会 智慧转型,目前已布局全线开放计算标准产品线,多年来一直践行开放计算理念并引领开放计算标准,持续定义领先的开放计算产品。

陈逸聪表示,现在浪潮在市场上也得到了认可,前不久国际权威数据机构IDC公布的2020年Q2数据报告中显示: 浪潮服务器国内出货量市场占比113%,增速80%,全球第一。浪潮 86服务器在中国市场市占率426%,排名中国第一。特别在AI领域,浪潮AI服务器中国市场占有率连续三年超过50%。

他强调到,浪潮为业界提供了全栈信息化解决方案,也期待与业内合作伙伴们共同打造一个开放的计算环境,为业内生态的建设创造更美好的未来。

浪潮信息是全球领先的人工智能基础设施供应商,拥有业内最全的人工智能计算全堆栈解决方案。据IDC数据显示,浪潮信息AI服务器在2021全年市场占有率达209%,份额同比提升36%,销售额同比增长683%,继续保持全球市场第一。各方面都不错加速了解下。

工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸

近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。

人工智能市场格局

人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 71 万亿美元。

多角度人工智能产业比较

战略部署:大国角逐,布局各有侧重

全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。

美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。

伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。

日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。

基础层面:技术薄弱,芯片之路任重道远

基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。

“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。

依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。

GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。

FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内百度、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。

ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如百度、华为和阿里)在细分领域也有所建树。

总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。

技术层面:乘胜追击,国内头部企业各领风骚

技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。

具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。

在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。

作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。

计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 694%,其中商汤市场份额 206%排名第一。

应用层面:群雄逐鹿,格局未定

应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到3605 亿元,约是技术层的167 倍,基础层的253 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。

中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、 *** 作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。

整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。

透析人工智能发展潜力

基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。

从智能产业基础的角度

产业化程度:增长强劲,产业规模仅次美国

中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、7125 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。

技术创新能力:专利多而不优,海外布局仍有欠缺

专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 7395%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。

从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。

中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 856%的专利仍能得到有效保留。

人才储备:供需失衡,顶尖人才缺口大

人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 618%。欧洲 28 国拥有 43064 名人工智能人才,位居全球第一,占全球总量的 211%。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 226 倍,基础层人才数是中国的 138 倍。

我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。

人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 439%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。

从学术生态的角度

技术创新能力:科研产出表现强劲,产学融合尚待加强

科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 6964%。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的89%增长至2018年的282%, CAGR1794%。2018 年,中国以 24929 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。

我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 3678%;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 080,较 2010 年增长 4423%,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。

从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 736 倍,欧盟的 192 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 245%,与以色列(1006%)、美国(953%)、日本(647%)差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。

中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 457%。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。

从创新环境的角度

研发投入:中美研发投入差距收窄

中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 6077%。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 1443%,同期美国 CAGR 仅 299%。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 197%,低于日本和美国 153、087 个百分点。

资本投入:资金多而项目缺,资本投向侧重终端市场

中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 507%。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 355%。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。

相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。

基于信息熵的 TOPSIS 法:综合指标评估

数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。

展望

转自丨 信息化协同创新专委会

随着人工智能应用的不断扩大和深入,算力需求将不断增加。因此,未来算力发展将会迎来以下机遇:
超级计算机:随着技术的提升,超级计算机的算力将会越来越强大,可以处理更加复杂的人工智能问题。
量子计算:量子计算是一种全新的计算方式,它利用量子比特而非传统的经典比特进行计算,因此具有比传统计算机更快的计算速度。这将为人工智能开辟新的研究方向,同时也为解决更加复杂的人工智能问题提供了可能。
模型压缩与量化:针对目前人工智能模型存在的内存占用和计算速度慢等问题,模型压缩和量化技术将成为重要的发展方向。通过减小模型大小和复杂度,同时保持良好的精度,可以在不降低算法性能的情况下实现更高效的计算。
分布式计算:由于单台设备的算力有限,分布式计算将成为满足大规模计算需求的关键技术之一。这项技术可以将计算任务分配给多台设备进行处理,提高计算效率和准确性。
总之,随着人工智能应用的不断扩大和深入,算力发展将会迎来更多机遇,并为人工智能技术的进一步发展提供有力支撑。

人工智能行业主要上市公司:海康威视(002415)、科大讯飞(002230)、赛为智能(300044)、东杰智能(300486)、闻泰科技(600745)、中兴通讯(000063)、恒生电子(600570)等

本文核心数据:全球人工智能发展历程 市场规模 投融资数量、金额及轮次 企业增长情况 人才分布情况 竞争格局等

发展历程:当前全球人工智能处于第三个发展高潮期

人工智能至今已经有60多年的发展历史,其概念的提出始于1956年的美国达特茅斯会议,从诞生至今经历了三次发展浪潮。当前人工智能处于第三个发展高潮期,得益于算法、数据和算力三方面共同的进展。

市场规模:中国人工智能市场规模增速超过全球

——全球市场规模:2020年疫情影响下 全球人工智能市场规模增速放缓

基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。全球人工智能产业规模持续增长,2020年受疫情影响增速有所放缓。

根据IDC公布的数据显示,2020年全球人工智能市场的规模比2019年增长123%,达到1565亿美元。IDC表示虽然全球AI市场受到了疫情影响,但是对人工智能市场的投资将会快速恢复。

注:IDC统计的市场规模包括智能硬件、软件与服务市场。

——中国市场规模:中国人工智能市场增速高于全球 占比有所提升

近年来,中国人工智能产业在政策与技术双重驱动下呈现高速增长态势。根据中国信通院数研中心测算,2020年中国人工智能产业规模为3031亿元人民币,同比增长151%。中国人工智能产业规模增速超过全球。2020年,中国人工智能市场规模占全球比例接近30%,且较上一年有所提升,说明中国人工智能市场较蕴藏着较大的增长空间。

注:中国信通院的市场规模根据IDC数据测算,统计口径与IDC一致,即包括软件、硬件与服务市场。汇率按67计算。

行业投融资情况:资本助力行业高速成长 中国人工智能投资市场遥遥领先

——投融资数量及金额:近两年全球人工智能投资金额高速增长

从全球市场来看,人工智能的火热,离不开背后资本的助力。2014-2018年全球人工智能融资金额和融资次数逐年增长,2018年全球人工智能行业投融资事件共计1016起,投资总金额达159802亿元。2019-2020年人工智能投融资事件有所减少,2020年相关投融资事件仅有791起,但投资金额却逐年增加,2021年仅1-11月份,全球人工智能投融资金额已高达322760亿元。

注:数据截止2021年11月底。

——投融资区域竞争情况:中国人工智能投资额远远领先 行业成长性较高

从投资区域来看,全球主要地区的投融资金额均保持波动上升的走势。其中,中国人工智能投资额远远领先,2021年达到229319亿元,接近美国人工智能市场的3倍。

注:数据截止2021年11月底。

企业数量情况:全球人工智能独角兽企业数量高速增长 主要分布在中美市场

——2020年全球人工智能独角兽企业数量增长超过50%

近年来,人工智能成为全球关注的焦点之一。各国均大力发展人工智能,人工智能相关企业飞速增长。根据《2020胡润全球独角兽榜》显示,2020年,全球人工智能行业有63家独角兽企业上榜,相比2019年的40家增长了575%。

——中国和美国为全球人工智能企业数量领先者

从区域竞争情况来看,以英国、德国为代表的欧洲发展区和以中国、日本、新加坡、印度为代表的亚洲发展区整体实力相近。欧洲在人才储备上多于亚洲地区,但是亚洲地区人工智能活跃度远高于欧洲,亚洲对创新业务发展友好。其中,中国是全球人工智能发展速度最快的国家,且发展速度领先于全球。在新增专利数量和人工智能独角兽企业数量上均超过美国。根据胡润研究院发布的“2020胡润全球独角兽榜”,美国以34家人工智能独角兽企业排名第一,其次是中国21家和英国3家。

企业与人才竞争情况:中美市场聚集众多龙头企业与高技术人才

——企业竞争情况:全球人工智能龙头企业多聚集在中国和美国

目前,全球人工智能企业最多和最具有竞争力的的国家是美国。根据中科院发布的“2020年全球人工智能企业TOP20榜单”中,美国企业入榜数量最多,有9家企业上榜;其次是中国,上榜企业有7家;日本有2家;英国和瑞士各1家。

从细分领域来看,人工智能涉及范围广阔,除科技巨头全方位深度参与外,其他企业在行业中依赖自身优势参与竞争,构建了纷繁复杂的竞争格局。其中,基础层领域硬件发展日新月异,巨头布局开源平台;技术层面向企业级应用,细分领域竞争较为激烈;应用层想象空间广阔,参与企业众多。

科技巨头是行业内最重要的力量,具备数据、技术、资本等优势,结合自主研发和兼并收购共同发力,将在AI领域进行全方位跨层次布局,引领行业发展。其中,具有综合数据优势的互联网企业如Google、百度等,全面布局人工智能行业。

基于场景的互联网企业如Facebook、苹果、亚马逊、阿里巴巴、腾讯等,将人工智能与自身业务深度结合,不断提升产品功能和用户体验;传统科技巨头企业,如IBM、微软等,面向企业级用户搭建智能平台系统。

——人才竞争情况:美国AI人才数量领先全球 中国进步空间巨大

从国家角度看AI高层次学者分布,美国A1高层次学者的数量最多,有1244人次,占比622%,超过总人数的一半以上,且是第二位国家数量的6倍以上。中国排在美国之后,位列第二,有196人次,占比98%。德国位列第三,是欧洲学者数量最多的国家;其余国家的学者数量均在100人次以下。

竞争力预测:2030年中国人工智能产值占GDP比重将居全球首位

虽然目前中国人工智能技术水平仍与美国有一定的差距,但是国际上更为看好中国人工智能产业的发展。据普华永道预计,未来十年中国将从人工智能中获得最大的收益,2030年人工智能产值将达到GDP比重的261%;而北美与西欧则分别占到各国GDP的145%和115%。

由上述分析来看,中国和美国是全球人工智能市场最为领先的地区。美国人工智能发展较中国起步更早,在技术与人才储备上更胜一筹。但近两年,中国人工智能的市场规模增速超过全球,其在全球的占比也有所提高,加之资本市场火热,逐渐形成大批人工智能龙头企业,不断提升其国际竞争力,未来有望在技术与政策的双重推动下,持续领跑全球市场。

更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。
第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。
第三:人工智能技术将成为职场人的必备技能之一。随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求,就是需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。

浪潮AI服务器市场份额全球第一,而且已经连续五年以超50%的市场份额稳居中国AI服务器市场第一。个人认为寻找AI服务器供应商,与这样的有规模、有技术、有口碑的大企合作会更靠谱,产品的研发创新都有保障。

文/杨剑勇

以深度学习、机器学习为核心的AI技术得到迅猛发展,主要得益于算力、算法上的突破,使得AI技术得到广泛应用落地。在金融业,因把人工智能引入金融服务,让蚂蚁金服成为全球独角兽之王,估值高达2000亿美元,且有望A+H模式登陆科创板。以及传统银行也在积极拥抱新技术,以人工智能技术为手段,以大数据为驱动,推动零售金融数字化转型。

还有制造业、供应链管理、医疗、智能家居等细分领域,人工智能技术得到广泛落地,整体来说,人工智能技术已成为全 社会 智能化转型关键技术之一。各国为把握人工智能所带来的新一轮产业智能化变革,纷纷出台相关政策。

为抢抓人工智能发展的重大战略机遇,我国于2017年出台新一代人工智能发展规划。预计到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在人工智能升格到国家战略后,以BAT、华为等为代表的 科技 巨头纷纷调整战略,以及AI创新独角兽也得到快速发展。主要在于我国在用户、数据和应用场景等方面优势明显,推动国内人工智能呈现出蓬勃发展态势。

如今,为进一步落实发展人工智能的决策部署,推动人工智能技术在开源、开放的产业生态不断自我优化,包括基础共性、伦理、安全隐私等方面标准的引领作用,我国印发了国家新一代人工智能标准体系建设指南。立足国内并兼顾国际的同时,促进创新成果与产业深度融合,注重与智能制造、工业互联网、机器人、车联网 等相关标准体系的协调配套,为高质量发展保驾护航。

对于国家人工智能标准体系指南出炉,以及当前新基建大背景下,深耕人工智能应用的厂商来说,将会释放新一轮发展机遇。那么,除BAT、华为等 科技 巨头以外,本文梳理在机器视觉、智能语音、智能家居、AI云、AI芯片等各细分赛道核心玩家,对于他们来说,有望受益于人工智能这一波红利,迎来最好的发展时期。

机器视觉:旷视 科技

计算机视觉与智能语音市场增长强劲,IDC报告指出,在疫情之后,包括园区、办公楼宇将带来一拨新的人脸识别需求。在传统行业,工业质检、巡检应用正在兴起。只是,在机器视觉市场则主要被旷视、商汤、云从和依图为首的四大AI独角兽占市场主导地位。

旷视、商汤 科技 等机器视觉独角兽作为人工智能技术后浪,显然在机器视觉市场超海康威视、大华股份等前浪。因人工智能应用落地,也使得旷视 科技 等后浪AI独角兽一跃成为机器视觉细分场景的佼佼者。根据旷视 科技 早前披露的数据显示:2016年营收为6780万元增至2017年的313亿元,到2018年增长至1427亿元,复合年增长率为3588%。业绩高速增长这主要得益于视频物联网应用于城市及公共场所所释放的巨大机遇。

此外,在面对新基建国家战略,旷视 科技 也积极推进,并助力新基建落地,公布了AI新基建线路图。专注于“算法”,结合应用,在个人物联网、城市物联网、供应链物联网三大细分赛道落地,并通过新一代AI生产力平台把 AI 能力分享世界,开发者可以基于旷视Brain++平台,覆盖更多场景的应用,推进AI新基建进程。

智能语音:科大讯飞

相比机器视觉由后浪主导不同的是,智能语音技术则由科大讯飞、百度、阿里等 科技 巨头占主导。当然,思必驰、小i机器人等优秀人工智能创新企业也跻身中国人工智能语音应用主流玩家。IDC报告显示,2019年中国语音语义应用市场达1225亿美元。除了智能家居等消费级产品,在智能客服、法庭庭审语音转文字,贡献了较大的市场规模。

就市场格局来看,科大讯飞占据领先地位。作为智能语音领导厂商,在2019年营收更是突破百亿大关。对于人工智能这条赛道深耕二十多年的科大讯飞来说,意味着其人工智能技术布局成果显现,也预示着将迈入新的里程碑。

目前,科大讯飞语音技术教育、金融、政法、城市、 汽车 、翻译等场景。此外,其AI开放平台有超过112万开发者。在平台+赛道战略指引下,使得开放平台、教育和智能硬件方向增长尤为迅猛,推动整体业绩稳健增长。

智能家居:海尔智家

在人工智能、物联网等技术推动下,家庭智能化快速发展,以及消费者对家庭场景中各种智能设备保持强劲的竞争态势,使得各类玩家纷纷涌入智能家居这条赛道,大致可以分成传统家电厂商、手机厂商以及互联网企业为首的三大阵营。而传统厂商当中,以海尔智家尤为突出,并已锐变为物联网生态品牌。

对于海尔智家来说,因早早布局智慧家庭,将场景品牌和生态品牌提升为集团战略,所以在生态培育上有先发优势。在业界看来,深耕家电多年且始终追随用户体验的海尔智家,深知如今用户已经不满足于单一的家电产品,必须以家庭全场景来满足用户变化了的生活需求。为此,海尔智家基于衣、食、住、娱不同生活场景,以成套化满足人们个性化的智慧生活。

AI云:百度智能云

随着全球智能化转型趋势背景下,各界积极部署物联网、工业互联网,以及将更多应向云端迁移,进一步激活全球云服务市场。与此同时,在云端这条赛道上玩家竞争进入比拼人工智能应用能力阶段。根据《IDC中国人工智能云服务市场研究报告(2019)》显示:AI能力已成为用户进行云服务选型时的重要考量因素。

截止到2020年4月,各厂商在公有云上开放AI能力的数量,从统计数据来看,百度智能云、阿里云开放的能力最为丰富。需要指出的是,凭借丰富的AI能力,百度智能云在多个细分领域排名第一。

从2019年AI公有云服务市场份额来看,百度智能云市场份额第一,且连续两年在AI Cloud领域排名中国第一。在自然语言处理领域,目前实现一定规模的商业化营收的仅有百度智能云。不管是智能音箱、家居等消费级产品市场还是其他企业级市场,百度智能云都建立了广泛的客户基础。

AI芯片:地平线

近年来,信息 科技 以惊人的速度在发展,尤其NB-IoT、5G等无线通信技术署规模日益扩大,使得物联网连接数高速增长。截至2019年,全球物联网连接数高达120亿个,到2025年将增长至246亿,年复合增长率达到13%,这一数据来自今年早些时候GSMA所发布的《2020年移动经济》报告。

因数百亿设备连接至网络,对物联网芯片和人工智能芯片需求剧增,结合ABI Research调研机构早前发布的报告显示,全球云端AI芯片市场规模预计2024年将达100亿美元,边缘AI芯片同样也呈现出高速增长态势,未来几年,年复合增长率为31%。

对于地平线来说,其AI芯片商业落地聚焦在智能驾驶与智能物联网两条赛道上,地平线创始人余凯对曾笔者表示,AI芯片对技术要求极高,地平线在商业落地上进展比较顺利。当然,绝对不是一飞冲天,需要稳扎稳打。

目前,地平线在 ADAS、自动驾驶、高精地图和智能座舱等领域已赋能一大批行业顶级Tier 1、OEM、通讯运营商,包括长安、福瑞泰克、奥迪、佛吉亚、SK电讯、理想等多个顶尖企业在内的合作伙伴正与地平线携手加速智能驾驶时代的到来。诸如长安 汽车 发布主力车型UNI-T,内置中国首款车规级人工智能芯片——地平线征程二代,具备每秒4万亿次的算力,预示着地平线车规级人工智能中国芯首次前装量产。

此外,地平线与中汽创智签署合作协议。中汽创智又叫T3 科技 ,由国资委投资,中国一汽、东风公司和长安 汽车 三大央企 汽车 厂商成立的共性技术平台。根据协议,双方将基于地平线行业领先的车规级 AI 芯片和人工智能算法,以高级辅助驾驶(ADAS)、高等级自动驾驶和智能座舱为重点,全面深入合作,加速智能 汽车 量产方案中的平台技术研发。

“地平线作为边缘AI芯片领导者,长期致力于AI芯片的软硬件研发和商业落地工作。”在地平线联合创始人兼技术副总裁黄畅博士2020全球人工智能和机器人峰会上对此表示。

最后

世界经济总体较弱的局面下,全球积极利用 科技 推动新经济发展。我国也提出加大新型基础建设,为经济释放增长活力。其中,人工智能技术正在与各行各业快速融合,推动传统行业转型升级、提质增效的同时,也不断催生出新技术、新模式、新业态,以人工智能为代表的信息化技术将成为智能化经济的核心驱动力。

在人工智能标准指南、新基建战略下,为发展新技术释放出政策红利,以人工智能、自动驾驶、云服务、大数据和物联网等为核心技术为创新方向的企业,也迎来新一轮的机遇。

杨剑勇,福布斯专栏作家、网易签约作者,并连续三年(2017-2019年)获得年度最佳签约作者。致力于深度解读5G、物联网经济和人工智能等前沿 科技 ,观点和研究策略被众多权威媒体和知名企业引用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12776144.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存