智能交通行业现状和发展趋势分析

智能交通行业现状和发展趋势分析,第1张

政策出台推动智能交通发展

交通是连接城市的重要纽带,对生产要素的流动、城镇体系的发展有着决定性的影响。智能交通行业的主管部门对智能交通行业的发展战略、方针政策和法规;行业的发展规划、中长期计划;行业技术标准和规范等作出指示。《数字交通发展规划纲要》指出到2025年,交通运输基础设施和运载装备全要素、全周期的数字化升级迈出新步伐,交通运输成为北斗导航的民用主行业,第五代移动通信(5G)等公网和新一代卫星通信系统初步实现行业应用。《推进综合交通运输大数据发展行动纲要(2020—2025年)》指出到2025年,综合交通运输大数据标准体系更加完善,基础设施、运载工具等成规模、成体系的大数据基本建成。

智能交通投资推动智能交通市场规模扩大

在国家政策的大力支持下,我国各省市纷纷投资智能交通市场。2020年3月,江苏省以6413万亿元打造公安智能交通一期大数据中心、云平台服务器硬件及软件项目。2019年11月,烟台市以27278万元投资建设 烟台市公安局交通警察支队智能交通管理服务系统项目等。

在智能交通投资方面,根据智能交通网ITS114,2019年中国智能交通建设千万级项目TOP10的公司包括海信网络科技、移动系、联通系等。其中海信网络科技凭借在交通管控、智能运输板块中均衡稳定的表现,2019年位居我国城市智能交通市场千万项目中标企业排行榜首位。海信网络推出的全球领先的人工智能产品系统架构“云脑”战略,涵盖城市云脑、交管云脑、交通云脑、公安云脑等四大子平台,为智能交通、智能城市、公共安全等产业的发展提升赋能,目前已在全国137座城市落地。

在智能交通行业兼并重组方面,行业的兼并重组初步进行,市场集中度有望提升。随着市场参与者的增加,行业竞争格局逐步发生变化。2018-2019年我国智能交通领域投资、收购规模多上亿元。其中2019年6月,阿里巴巴以3595亿人民币收购北京中智汇通信息科技有限公司、夏曙东、北京建信股权投资基金(有限合伙)持有的北京千方科技股份有限公司15%股权。千方科技是一家智能交通数据服务商,专注于研发和提供行业技术和产品,业务覆盖城市交通、公路交通、轨道交通、民航等领域,致力于形成从产品到解决方案、从云端数据到出行者、从硬件基础设施到软件智能中枢的完整产业链。通过此次合作,千方科技将获得阿里云在技术、产品与服务上的支持,推动公司人工智能等核心技术能力升级,帮助公司提升在市场开拓等多方面的竞争力,巩固其在智能交通等领域的地位。而阿里巴巴也由此布局智能交通与安防领域。

根据中国智能交通协会公布的数据,2010年我国智能交通市场规模仅为1092亿元,到了2017年我国智能交通市场规模上升至5159亿元,预计2020年我国智能交通市场规模将达到千亿元的水平。

—— 更多数据及分析请参考前瞻产业研究院《中国智能交通行业市场前瞻与投资战略规划分析报告》。

当前,国内外互联网巨头纷纷将人工智能作为下一次产业革命的突破口,积极加大投资布局,与此同时,随着人工智能技术进步和基础设施建设不断完善的推动下,全球人工智能应用场景将不断丰富,市场规模持续扩大。

“人工智能”一词最初是在1956年美国计算机协会组织的达特矛斯(Dartmouth)学会上提出的,人工智能发展至今经历过经费枯竭的两个寒冬(1974-1980年、1987-1993年),也经历过两个大发展的春天(1956-1974年、1993-2005年)。从2006年开始,人工智能进入了加速发展的新阶段,并行计算能力、大数据和先进算法,使当前人工智能加速发展;同时,近年来人工智能的研究越来越受到产业界的重视,产业界对AI的投资和收购如火如荼。

人工智能技术迈入深度学习阶段

机器学习是实现人工智能的一种重要方法,深度学习(Deep Learning)是机器学习(Machine Learning)的关键技术之一。深度学习自2006年由Jeffery Hinton实证以来,在云计算、大数据和芯片等的支持下,已经成功地从实验室中走出来,开始进入到了商业应用,并在机器视觉、自然语言处理、机器翻译、路径规划等领域取得了令人瞩目的成绩,全球人工智能也正式迈入深度学习阶段。

与此同时,全球人工智能领域对新技术的探索从未停止,新技术层出不穷,例如近年来一些新的类脑智能算法提出来,将脑科学与思维科学的一些新的成果结合到神经网络算法之中,形成不同于深度学习的神经网络技术路线,如胶囊网络等,技术的不断进步是推动全球人工智能的发展的不竭动力,这些新技术的研究和应用将加快全球人工智能的发展进程。

主要经济体加快人工智能战略布局

人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。自2013年以来,包括美国、中国、欧盟、英国、日本、德国、法国、韩国、印度、丹麦、芬兰、新西兰、俄罗斯、加拿大、新加坡、阿联酋、意大利、瑞典、荷兰、越南、西班牙等20多个国家和地区发布了人工智能相关战略、规划或重大计划,越来越多的国家加入到布局人工智能的队列中,从政策、资本、技术人才培养、应用基础设施建设等方面为本国人工智能的落地保驾护航。

人工智能领域新基建扩容趋势明显

人工智能新基建包含智能芯片、5G、感知网络、数据中心等支持人工智能发展的生产性设施建设,同时人工智能与实体经济深度融合做构建的智能经济形态也是人工智能领域新基建的一部分。近年来,全球人工智能发展的生产性设施建设步伐加快,2020年新冠疫情在全球爆发,对全球的经济生产活动产生较大的冲击,但值得注意的是,全球范围内的新基建业务扩容未被阻断,从各国政府到行业主要企业都积极参与到人工智能新基建的建设中。

人工智能芯片是人工智能的大脑,随着全球人工智能终端设备数量的增长以及边缘计算的需求逐步提升,全球人工智能芯片需求量快速增长,市场规模不断扩大。根据Tractica公布的数据显示,2019年全球人工智能芯片市场规模达110亿美元,预计2020年全球人工智能芯片市场规模将增加至175亿美元,2025年全球人工智能芯片市场规模有望突破720亿美元。

5G的低延迟、高速度和边缘计算能力可以推动人工智能设备更智能地进行大量的数据连接,提升人工智能设备的学习能力,与此同时将5G网络与人工智能技术相结合,可以有效提高5G网络的智能化程度,使网络从人工配置参数与使用专家的经验编制策略转变为网络智能配置参数与智能策略自动生成成为可能。由此可见,5G与人工智能的互促式发展可以加速全球人工智能应用突破与落地,因此,目前全球范围正在加快5G商用推广的步伐,全球5G基础设施建设如火如荼。

根据GSMA(全球移动通信系统协会)公布的数据显示,截至2020年7月底,全球38个国家已经部署了92张5G移动网络,较4月底增加了22张;截至2020年9月,全球5G终端达到18类362款,其中162款手机,113款已经上市,其中70%+支持SA(独立组网),5G商用正在加快。

根据爱立信公布的数据显示,截至2020年6月底,全球范围内共部署了约72万个5G基站,2020年8月这一数据增加至80万个,前瞻预计,到2020年底,全球5G基站总数将达到100万个。

近年来,随着计算能力越来越强,云计算、大数据、虚拟化等技术的出现,让人工智能有了可依赖的现实技术基础。人工智能的算法需要依赖海量的数据,利用海量的样本进行机器学习。数据中心天然就是一个海量数据库,每天生成的和转发的数据都在呈指数增长,有了这些数据,再利用大数据技术去分析,就能得到很多有意义的数据供人工智能学习;与此同时,人工智能要依赖计算,只有高速的计算能力才能在短时间完成指定的任务,现在的数据中心利用网络进行分布式计算,大大提高了计算能力,人工智能的学习能力可以得到大幅提升。数据中心为人工智能提供更多的技术支撑与创造无限可能。

全球数据中心建设加快有力的推动了人工智能的发展,从2017年开始,伴随着大型化、集约化的发展,全球数据中心数量开始缩减,但值得注意的是,随着行业集中度的逐步提升,全球超大型数据中心数量总体增长,据Cisco的统计数据显示,2019年,全球超大型数据中心数量约447个;至2020年,全球超大新数据中心将达到485个。

根据Gartner公布的数据显示,2017年底全球部署机架数达到4933万架,安装服务器超过5500万台,2019年全球数据中心部署的机架数量约为4954万架。预计2020年机架数将超过498万架,服务器超过6200万台。

人工智能商业化加速 应用场景愈发丰富

人工智能技术经过过去近10年的快速发展已经取得较大突破,随着人工智能理论和技术的日益成熟,人工智能场景融合能力不断提升,因此,近年来商业化应用已经成为人工智能科技企业布局的重点,欧洲、美国等发达国家和地区的人工智能产业商业落地期较早,中国作为后期之秀,近年来在政策、资本的双重推动下,人工智能商业化应用进程加快。目前,人工智能技术已在金融、医疗、安防、教育、交通、制造、零售等多个领域实现技术落地,且应用场景也愈来愈丰富

值得注意的是,尽管目前全球范围内人工智能商业化进程正加速推进,但受制于应用场景的复杂度、技术的成熟度、数据的公开水平等限制,全球人工智能仍处在产业化和市场化的探索阶段,落地场景的丰富度、用户需求和解决方案的市场渗透率仍有待提高。

人工智能市场规模快速增长

基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。

普华永道数据预测,受到下游需求倒逼和上游技术成型推动的双重动因,2020年全球人工智能市场规模将达到2万亿美元,预计未来几年市场将继续保持高速增长,到2030年全球市场规模将达到157万亿美元的规模,约合人民币104万亿元。

北美地区人工智能产业发展领先

近年来,人工智能在北美洲、亚洲、欧洲地区发展愈演愈烈。北美、亚洲和欧洲是全球人工智能发展最为迅速的地区。截止2019年底,北美地区共有2472家人工智能活跃企业,超级独角兽企业78家;亚洲地区活跃人工智能企业1667家,超级独角兽企业8家;欧洲地区活跃人工智能企业1149家,超级独角兽企业8家。

注:超级独角兽指的是估值超过100亿美元的企业

科技巨头纷纷布局人工智能行业

近年来,全球科技巨头纷纷布局人工智能。在美国地区,Google实行“全面开花”的策略,在云服务、无人驾驶、虚拟现实、无人机、仓储机器人等领域均有布局。Facebook依托社交网络,从产品中获得数据、训练数据,再将其人工智能产品反作用于社交网络用户。微软则致力于将人工智能技术应用到智能助手、AR/VR等领域,例如Skype及时翻译、小冰聊天机器人、Cortana虚拟助理等应用。在中国,互联网巨头企业如百度、腾讯和阿里均纷纷依托自身平台优势,构建人工智能服务产品,主要布局于人工智能应用层领域。

人工智能新一轮资本热潮方兴未艾

从生产方式的智能化改造,到生活水平的智能化提升,再到社会治理的智能化升级,新一代人工智能的应用驱动特征愈加明显,大量新兴应用场景持续培育形成。快速丰富的数据储备,逐渐清晰的业务逻辑,以及即将落地的商业价值,促使全球人工智能新一轮资本热潮方兴未艾。

根据CB Insights公布的数据显示,2014-2019年全球人工智能融资金额和融资次数逐年增长,2019年再创新高,融资金额达到26580亿美元,融资次数超过2000次。

—— 以上数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

随着互联网的不断发展,越来越多的智能设备出现在我们的生活之中,而今天我们就一起来了解一下,关于移动端智能AI设备的一些发展趋势,下面电脑培训就开始今天的主要内容吧。

关于智能终端设备

相信拥有一台真正可以依赖、可以帮助我们处理日常任务的智能终端设备是每一个人的梦想,这也是很多企业的产品目标。那么在吴琨看来,在未来,智能终端设备会是什么样的出现哪些发展趋势呢

在吴琨看来,智能终端设备可以分为这么几类,一类是IoT(物联网)设备,这些设备的特点是可以连入小范围的局域网,然后通过某个中央枢纽节点路由到广域网。IoT的设备只需要完成一些简单交互和功能,所以终端运算能力、存储能力和智能程度比较低,交互方式应该以简单语音指令为主。

二类是特定领域的智能设备,如服务机器人、智能音箱等。这类设备一般都有触屏,所以需要有更为复杂的交互,除了语音识别外,还需要对话管理、语义理解、图像识别方面的技术应用。所以,对软硬件的要求也会比较高,需要终端有较强的运算能力。

三类是平台化的智能服务加上具有中等运算能力的终端设备。例如将大型游戏的运算从终端转移到云端,然后将数据传回终端。这类终端也需要承担部分运算以便弥补网络设施带来的延迟,但相对来说,会比IoT要更为强大。

关于人机交互

真正的人机交互的话题更多的是哲学层面的。如果要实现人和人一样的人机交互,那么看起来通用人工智能是必不可少的前提。

目前学术界有诸多观点,吴琨比较看好的是三个条件:一是比目前数据量更大、全且完整的海量无结构数据;二是比目前计算能力强得多的计算机;三是比目前网络结构更为复杂但通用的更趋近于人脑的神经网络。然后我们就可以尝试去让计算机从数据中自己发现知识、学习知识。不过,目前这些条件都不满足。因此,我们还是应该脚踏实地,从具体业务、需求出发,走出一条AI实践、AI落地的路,从许许多多这样的路中,总结归纳出更好的方法论,为实现远期目标做有效积累。

机器学习将向终端转移

近年来,机器学习特别是深度学习的模型推演,逐渐出现了从云端向终端迁移的趋势。但终端机器学习取代云端机器学习会成为未来的趋势吗

吴琨认为,出现这一现象主要有这几个原因:先是终端硬件计算能力的提升,特别是专门用于神经网络计算的AI芯片逐渐成为中设备的标配。二是行业对数据保护和用户隐私的重视,使得非必要数据可以不必通过上传到服务器就能服务用户。三是终端计算可以规避网络延迟和无网弱网情况,使得服务的体验更好。四是科技的发展使得AI工程技术人员能够更有效的利用数据来达到同样的服务效果,使得终端计算的可行性也进一步提高。

AI正在成为企业助力决策、提升客户体验、重塑商业模式与生态系统、乃至整个数字化转型的关键驱动力。

但在崭新的AI时代,数据中心网络性能也正在成为AI算力以及整个AI商用进程发展的关键瓶颈,正面临诸多挑战。

为此,华为以“网络新引擎 AI赢未来”为主题发布了业界首款面向AI时代数据中心交换机CloudEngine 16800,将人工智能技术创新性的应用到数据中心交换机,引领数据中心网络迈入AI时代。

AI时代数据中心网络面临三大挑战

当前,数字化转型的持续推进,正在提速驱动数据量暴增;同时,语音/视频等非结构化数据占比持续提高,庞大的数据量和处理难度已远超人类的处理能力,需要基于机器运算深度学习的AI算法来完成海量无效数据的筛选和有用信息的自动重组,从而获得高效的决策建议和智慧化的行为指引。

根据华为GIV 2025(Global Industry Vision)的预测,企业对AI的采用率将从2015年的16%增加到2025年86%,越来越多的企业将利用AI助力决策、重塑商业模式与生态系统、重建客户体验。

作为人工智能的“孵化工厂”,数据中心网络正成为AI等新型基础设施的核心。但与此同时,随着AI时代的到来,AI人工智能的算力也受到数据中心网络性能的影响,正在成为AI商用进程的一大瓶颈。

华为网络产品线总裁胡克文指出,AI时代的数据中心网络将面临以下三大挑战:

挑战1.AI算力。高性能数据中心集群对网络丢包异常敏感,未来的网络应该做到零丢包。但传统的以太网即使千分之一的丢包率,都将导致数据中心的AI算力只能发挥50%。

挑战2.大带宽。未来5年,数字洪水猛增近20倍,现有100GE的网络无法支撑。预计全球年新增数据量将从2018年的10ZB猛增到2025年180ZB(即1800亿TB),现有100GE为主的数据中心网络已无法支撑数据洪水的挑战。

挑战3.要面向自动驾驶网络的能力。随着数据中心服务器规模的增加,以及计算网络、存储网络和数据网络三网融合,传统人工运维手段已难以为继,亟需引入创新的技术提升智能化运维的能力,如何用新的技术去使能、把网络问题排查出来成为业界都在思考的问题。

华为定义AI时代数据中心交换机三大特征

从行业大势来看,随着以人工智能为引擎的第四次技术革命正将我们带入一个万物感知、万物互联、万物智能的智能世界,数据中心网络也必须从云时代向AI时代演进。在华为看来,数据中心需要一个自动驾驶的高性能网络来提升AI算力,帮助客户加速AI业务的运行。

那么,AI时代的数据中心网络究竟该如何建设呢?胡克文指出,“华为定义了AI时代数据中心交换机的三大特征:内嵌AI芯片、单槽48 x 400GE高密端口、能够向自动驾驶网络演进的能力。”

特征1.业界首款内嵌AI芯片数据中心交换机,100%发挥AI算力

从应用侧来看,刷脸支付的背后是上亿次图像信息的智能识别,深度 健康 诊断需要基于数千个算法模型进行分析,快捷网购体验离不开数百台服务器的智能计算。也就是说,新商业物种的诞生,产业的跨越式发展以及用户体验得以改变,强烈地依赖于人脸识别、辅助诊断、智能推荐等AI应用的发展。

但由于AI算力受到数据中心网络性能的影响,正在成为AI商用进程的关键瓶颈。为了最大化AI算力,存储介质演进到闪存盘,时延降低了不止100倍,计算领域通过采用GPU甚至专用的AI芯片将处理数据的能力提升了100倍以上。

CloudEngine 16800是业界首款搭载高性能AI芯片的数据中心交换机,承载独创的iLossLess智能无损交换算法,实现流量模型自适应自优化,从而在零丢包基础上获得更低时延和更高吞吐的网络性能,克服传统以太网丢包导致的算力损失,将AI算力从50%提升到100%,数据存储IOPS(Input/Output Operations Per Second)性能提升30%。

特征2.业界最高密度单槽位48 x 400GE,满足AI时代5倍流量增长需求

数据中心是互联网业务流量汇聚点,企业AI等新型业务驱动了数据中服务器从10G到25G甚至100G的切换,这就必然要求交换机支持400G接口,400GE接口标准化工作已经于2015年启动,目前针对数据中心应用已经完成标准化,400G时代已经来临。

集群的规模是数据中心架构演进的动力,经典的无阻塞CLOS理论支撑了数据中心服务器规模从千台、万台到今天10万台规模的发展,增大核心交换机容量是数据中心规模扩大的最常见手段。以一个1000T流量规模的数据中心组网为例,采用400GE技术,核心汇聚交换机需要5K个接口,相对100GE技术减少75%。

为此,CloudEngine 16800全面升级了硬件交换平台,在正交架构基础上,突破超高速信号传输、超强散热、高效供电等多项技术难题,不仅支持10G→40G→100G→400G端口平滑演进能力,还使得单槽位可提供业界最高密度48端口400GE线卡,单机提供业界最大的768端口400GE交换容量,交换能力高达业界平均的5倍,满足AI时代流量倍增需求。同时,CloudEngine 16800在PCB板材、工艺、散热,供电等多方面都进行了革命性的技术改进和创新,使得单比特功耗下降50%。

特征3.使能自动驾驶网络,秒级故障识别、分钟级故障自动定位

当数据中心为人工智能提供了充分的技术支撑去创新时,人工智能也给数据中心带来巨大利益,如借助telemetry等技术将异常信息送到集中的智能运维平台进行大数据分析,这极大提升了网络的运行和运维效率,降低运维难度和人力成本。但是当前计算和存储正在融合,数据中心服务器集群规模越来越大,分析的流量成千倍的增长,信息上报或者获取频度从分钟级到毫秒级,再加上信息的冗余,这些都使得智能运维平台的规模剧增,智能运维平台对性能压力不堪重负降低了处理的效率。如何减轻智能运维平台的压力,在最靠近服务器,最靠近数据的网络设备具有智能分析和决策功能,成为提升运维效率的关键。

CloudEngine 16800基于内置的AI芯片,可大幅度提升“网络边缘”即设备级的智能化水平,使得交换机具备本地推理和实时快速决策的能力;通过本地智能结合集中的FabricInsight网络分析器,构建分布式AI运维架构,可实现秒级故障识别和分钟级故障自动定位,使能“自动驾驶网络”加速到来。该架构还可大幅提升运维系统的灵活性和可部署性。

引领数据中心网络从云时代迈入AI时代

自2012年进入数据中心网络市场以来,目前华为已服务于全球6400+个用户,广泛部署在中国、欧洲、亚太、中东、非洲、拉美等全球各地,帮助互联网、金融、政府、制造、能源、大企业等多个行业的客户实现了数字化转型。

2017年华为进入Gartner数据中心网络挑战者象限;2018年进入Forrester数据中心SDN网络硬件平台领导者;2013-2018年,全球数据中心交换机厂商中,华为连续六年复合增长率第一,发展势头强劲。

早在2012年,华为就以“云引擎,承未来”为主题,发布了CloudEngine 12800数据中心核心交换机,七年以来这款面向云时代的交换机很好的支撑了数据中心业务d性伸缩、自动化部署等核心诉求。

而随着本次华为率先将AI技术引入数据中心交换机、并推出面向AI时代的数据中心交换机CloudEngine 16800,华为也在引领数据中心网络从云时代迈入AI时代。

2018年,华为轮值董事长徐直军宣布:将人工智能定位为新的通用技术,并发布了人工智能发展战略,全面将人工智能技术引入到智能终端、云和网络等各个领域。而本次华为发布的业界首款面向AI时代数据中心交换机CloudEngine 16800,也是华为在网络领域持续践行AI战略的集中体现。

而作为华为AI发展战略以及全栈全场景AI解决方案的一个重要组成部分,CloudEngine 16800不仅是业界首款面向AI时代的数据中心交换机,还将重新定义数据中心网络的代际切换,助力客户使能和加速AI商用进程,引领数据中心真正进入AI时代。

1、市场规模:中国人工智能行业呈现高速增长态势

人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,近年来,中国人工智能产业在政策与技术双重驱动下呈现高速增长态势。根据中国信通院数研中心测算,2020年中国人工智能产业规模为3031亿元人民币,同比增长151%。中国人工智能产业规模增速超过全球。

注:中国信通院的市场规模根据IDC数据测算,统计口径与IDC一致,即包括软件、硬件与服务市场。

2、竞争格局:中国人工智能企业主要分布在应用层 占比超过80%

——中国人工智能企业全产业链布局完善

我国作为全球人工智能领域发展较好的地区,无论是人工智能领域的基础层、技术层、应用层,还是人工智能的硬件产品、软件产品及服务,我国企业都有涉及。在国内,除去讯飞等垂直类企业,真正在人工智能有所长进的巨头依然是百度、阿里、腾讯这三家。

——中国人工智能企业主要分布在应用层,占比超过80%

据中国新一代人工智能发展战略研究院2021年5月发布的《中国新一代人工智能科技产业发展报告(2021)》数据,截至2020年底,中国人工智能企业布局侧重在应用层和技术层。其中,应用层人工智能企业数占比最高,达到8405%;其次是技术层企业数,占比为1365%;基础层企业数占比最低,为230%。应用层企业占比高说明中国的人工智能科技产业发展主要以应用需求为牵引。

3、技术分布:中国人工智能企业核心布局的技术主要为大数据和云计算

从人工智能企业核心技术分布看,大数据和云计算占比最高,达到4113%;其次是硬件、机器学习和推荐、服务机器人,占比分别为764%、681%、564%;紧随其后,物联网、工业机器人、语音识别和自然语言处理、图形图像识别技术的占比依次为555%、547%、476%、472%。

4、细分领域:深度神经网络领域为中国AI研究热门

根据清华大学人工智能研究院、与中国工程院知识智能联合研究中心联合发布的《人工智能发展报告2011-2020》,2011-2020年十大AI研究热点分别为深度神经网络、特征抽取、图像分类、目标检测、语义分割、表示学习、生成对抗网络、语义网络、协同过滤和机器翻译。

—— 更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12780338.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存