本文基于对redis、zookpeer、rocketmq、elasticsearch学习总结,对于分布式系统学习,一定绕不开一个点,那就是CAP定理。什么是CAP定理,我这里简单的复制摘抄一下百度上的文案。
CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance)。CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。
说明一下上面的三个要素各代表的含义:
CAP定理说明上述的三个要素不能兼顾,最多只能满足其中的两个要素,在分布式系统中,一般都是保证分区容错性,而在一致性和可用性之间做取舍。因此存在CP、AP两种分布式集群的实现。
CP集群,即满足一致性和分区容错性,如zookpeer
AP集群,即满足可用性和分区容错性,如redis-cluster
下面,针对与上述的CP和AP问题,我们展开话题。
对于分布式系统,学习了解多了之后,发现其内在的解决方案基本上都是一样的,所谓万变不离其中。总结一下大体在于以下几步:
数据分片,很多分布式系统尤其是中间件服务,一般都会涉及高并发,数据量大的问题,如redis-cluster、recketmq,以及被大家熟知的Elasticsearch。针对于大数据量高并发的问题,若不做处理,服务器的性能将会成为服务的瓶颈,解决的方案之一便是数据分片,将大数据量在集群中按照一定的规则分片,使数据按照一定的规则分布集群的不同服务器上,以减轻单个服务器的压力,保证服务集群的可用性。
redis-cluster的数据分片是通过redis-cluster的哈希槽来实现的,redis-cluster有16384个哈希槽,这个数量是固定的,根据集群中服务器的数量可以手动的调配每个服务上存放的hash槽的数量,哈希槽之间是相互独立的,因此对集群的扩展提供了便利。
rocketmq的分片和topic紧密相关,在使用rocketmq中,无论是消息的生产者还是消费者都需要注册订阅一个topic。在rocketmq集群中,集群中的broker保存这个topic下数据的一部分,也就是topic的其中一个数据分片。当然,rocketmq不仅将一个topic下的数据分片到多个broker上,而且,一个broker上的topic数据还可以被分为多个queue,这是因为rocketmq中,一个queue只能被一个consumer消费,若是consumer的数量多于queue的数量,没有绑定queue的consumer将不能消费数据。
elasticsearch的数据分片在我看来和mysql的分库分表原理是一样的,elasticsearch中,每一个索引都相当于mysql的一个表,将一个索引分成多个shard放在不同的节点上,每个shard存储一部分数据。elasticsearch将数据进行分片,这样可以支持集群的横向扩展,同时,多个节点提供服务可以提高系统的效率和吞吐量。
综上所述,数据分片的一般都有两个好处,一个是支持集群的横向扩展,而是提升服务的吞吐量和性能。数据分片解决了以上两个问题,但是若是集群中一个节点发生宕机,或者因为网络原因和集群断开链接,那么这部分的数据分片甚至整个集群都会不可用,如何解决这个问题,就需要用到数据备份和主备切换。
数据分片的策略 了解了数据分片之后,需要了解以下数据分片的策略,根据集群提供服务的性质不同,可以采用的数据分片策略也各有不同,下面是我学习后的总结:
说到这里,会发现其实这种分片策略和负载均衡的策略还是挺相似的。
数据备份,举个例子来说,我有两台电脑A、电脑B,A用于工作,B用于游戏,我写了一篇文章,保存在电脑上电脑上,若是某一天我的电脑A磁盘坏了,那我这篇文章就找不到了,即便我现在还有电脑B,我也没有办法在对文章进行编辑。但是若是我在之前,就将文章拷贝了一份放在电脑B上,那么现在,我用电脑B就可以对文件进行编辑修改。
举这个例子,我的目的就是为了说明数据备份对于集群可用性的意义,例子中,我的两台电脑可以认为是集群中两台服务器,两台服务器一开始提供的服务可能不相同,A电脑提供的就是编辑文章的服务,数据备份的意义就在于,当原本提供服务的服务器宕机损坏,集群中另外的服务器仍然可以根据已经备份的数据提供相同的服务,而不会影响到用户的工作。
数据备份的目的就是不发生单点问题的措施之一,但是若是数据备份的策略不合适,备份的时机不对,那么备份的数据时效性也是问题。还是从例子出发,这里的文章每次都是我手动从A电脑拷贝到B电脑,这是我的备份策略,若是我选择每天晚上才拷贝一次,那么若是A电脑在我拷贝之前坏了,当天的文章编辑数据就丢失了,采用手动的方式备份,这种备份方式耗时耗力且不可控,而在分布式集群中,不同的系统采用了不同的备份策略,下面一一来说明。
首先明确一点,在分布式集群中,不可能采用人工手动备份,一定是系统程序按照一定的规则自动备份,就好像我将AB连在一起,写个程序,让A电脑自动把文章同步到B电脑。数据备份的方式分为两种:
这里以redis-cluster和zookeeper举例。
在redis-cluster中,当一台新的slave节点加入时,会出发数据同步,需要将主节点的数据同步到从节点。这时根据从节点的状态有两种同步方案:完整重同步 和 部分重同步
完整重同步既是将主节点的全部数据都复制给新的slave节点。大致流程为,当一个新的节点加入进来时,发送PSYNC命令给主节点并携带slave节点自身的信息(重点是复制偏移量),主节点会根据slave传过来的信息判断是完整重同步还是部分重同步,如何判断与数据同步时的复制缓冲区有关,更细节不展开介绍。
相对于redis-cluster,zookeeper中的数据同步有四种方式,和redis-cluster完整重同步和部分重同步相似的SNAP(全量同步)和DIFF(增量同步),以及zk事务处理相关的TRUNC(仅回滚同步)、TRUNC+DIFF(回滚+增量同步)
当节点已经加入集群,成为集群中的从节点,只要不断开连接,一般都只需要进行增量同步,不过系统同步的范围和方式有所差异,大致分为下面六种:
下面还是以具体服务来举例: redis-cluster中,主从复制采用的是异步复制的方式,master节点在做数据变更之后,会由一个异步线程将数据变更同步给slave节点,这是通过push的方式。当redis28之后,slave会周期的获取最新的数据,加入了pull方式。无论是master还是slave,在进行数据同步时,不会阻塞正常的应用请求。所以redis-cluster的主从复制,是异步备份+最终一致性的备份。
elasticsearch的主从复制可以手动设置同步备份或者异步备份,数据备份时不要求强一致性,而是主分片(primary shard)会维护一份需要同步的(replica shard)分片列表,这个分片列表同步完成,则认为数据备份完成,需要注意的是,这里的主从复制不是节点的更新数据,而是分片的更新数据。
rocketmq的主从复制和elasticsearch类似,也可以分为同步备份和异步备份,不同的是rocketetmq的数据备份采用的是pull的方式,从节点会通过HAConnection链接主动向主节点发送待拉取数据偏移量,待主节点返回节点更新数据信息,更新从节点数据偏移量,如此重复。
zookeeper的数据备份则是通过ZAB协议,通过消息广播的方式同步数据到从节点。
当数据备份后,主从节点上就有了相同的数据,为了提升服务的性能,那么可以采用读写分离的方式。主节点提供数据写服务,从节点提供读服务,可以有效的分担主节点的服务器压力。可以进行数据分片的系统,如:redis、rocketmq、elasticsearch,一般都可以配置一主多从、多主多从的集群架构。
读写分离之后,主节点提供写服务,从节点只提供读服务,因此若是主节点发生宕机,从节点依然可以提供读服务,但是服务无法更新数据,这时候就要进行主从切换。早起,主从切换可以由人工手动完成,不过随着技术发展,主从切换已经成为集群的必备功能。想要实现主从切换,必须要解决两个问题:
解决这个问题,需要额外再引入一个角色,相当于是一个监视者的角色,能够长期的对主节点进行监视,若是只有一个监视者,可能会发生误判,所以还需要一套机制去保证当监视者说主节点宕机,那么主节点是真的宕机,否则集群会出现脑裂问题。
以redis为例,在redis的哨兵模式中,这个监视者的角色是一个个哨兵实例,而在redis-cluster架构中,这个监视者的角色是redis实例自己。
在redis哨兵模式中,哨兵集群中的哨兵实例会定期和redis实例进行通信(ping),监视redis实例的在线情况,若是其中一台哨兵发现redis实例master故障,那么该哨兵会将该master状态改为主观下线,并通知其他哨兵,当哨兵集群中达到配置数量的哨兵实例认为该master都为主观下线状态,这时会将master修改为客观下线状态,并开始触发后续的故障转移。
在redis-cluster模式中,集群中的每一个节点都可以和其他节点通讯(ping),当某一个节点A发现主节点B下线了,A会将该主节点B设为疑似下线状态。集群中的节点会通过互发消息维护信息,当另一个节点C收到A的消息时,会将A对B节点的判断记录在C节点的维护信息下,这个信息可以理解为A说C疑似下线了。若是有其他节点发送C的状态信息,A同样也会记录。当某一个节点如C发现记录的B节点信息中,超过半数的主节点都认为B下线了,那么C就会将B节点状态修改为已下线状态,并广播消息给集群的其他节点,开始后续的故障转移。
上面就是redis的两种分布式模式故障检测的方案。大致可以归结为,监视节点会和被监视节点进行通讯,感知被监视节点的状态;监视节点之间也会进行通讯,同步信息。为了防止集群出现脑裂,对于某个主节点的故障判断会十分的谨慎,需要达到一定数量的监视节点都认为主节点故障时,才会认为主节点真的故障,从而触发故障转移。
在rocketmq集群模式中,nameserver扮演着监视者的角色(不同于其他系统,nameserver并不负责集群的主从切换,rocketmq 45之前不支持自动主从切换,45之后,通过dledger实现自动的故障转移)。在elasticsearch集群中,elasticsearch实例本身在扮演监视者角色。zookeeper也是实例本身扮演监视者的角色。
故障转移就是当集群发现集群中的主节点/从节点发生故障之后的处理,从节点比较简单,直接将从节点下线即可,主节点的故障转移流程比较复杂,各个系统根据系统的功能和架构有不同的实现方式,共同点是选举出的主节点一定是集群中数据最新的最完善的节点。
选举过程大致如下:
首先选举成功的条件时集群中具有投票权限的超过半数的节点投票一致,通过某一个节点成为主节点。
开始一轮选举时,定义为一个纪元,用一个自增的id表示。
候选节点将带着纪元id,以及自身信息作为投票申请广播给集群给可投票的节点。
具有投票权限的节点投票只要满足两个条件:1自身在最新纪元没有给投过票 2节点发送过来的投票申请时最新纪元的(如何判断时最新纪元,则是判断一下节点之前通过申请的纪元id是否小于当前申请的纪元id)。
半数以上的投票节点通过某一个候选节点成为leader节点,则leader产生。
若是一个纪元没有产生主节点,则候选节点进入随机的休眠,并且开启下一个纪元,知道产生leader节点。
在zk集群经过崩溃恢复模式之后,需要保证:1已经提交的事务不能丢失 2未被提交的事务不能出现。如何保证以上两点,zk服务集群中维护了zxid,zxid也可以看作是一个自增的id,集群中每产生一个新事物,zxid就会增加。zxid有64位,前32位维护了集群主节点变更情况,每重新选举出一个新的主节点则增加,后32位维护在新的主节点集群下事务的id,产生一个新事物则增加。
ZAB的选举模式有很多种,我主要了解了默认,也是推荐的FastLeaderElection模式,在这个模式下,我会以集群中一台参与选举的服务器的视角来模拟选主的过程;
我是一台zk服务器,我现在很慌,因为我的leader服务器不见了,作为一个有梦想的follower,我也要参加leader的选举,为了这次选举我要准备:myid(在集群中标识是这台服务器的id),zxid(本台服务器保存的最新事务id),logicClock(本台服务器发起的第几轮投票)
首先我会自己选自己,这得自信。于是我将自身的选举信息[myid, zxid]放到自己的收票箱,然后将我的选举信息还有我的选举轮次logicClock广播给其他服务器进行PK
作为一个有原则的服务器,我们的选举也是有原则的,当我收到别人的选举信息时,我也会将他和我自己的选举信息进行PK,PK的原则如下:
经过这一系列的PK,终于选出了我心中的leader服务器,要广播给其他服务器。
超过半数的服务器都同意某一台服务器成为leader,选举结束了。
服务器的集群系统是比较复杂的功能,这个得根据你业务的需求来确定使用什么架构。
如果是做mysql的集群,可以使用mycat中间件做读写分离,也可以使用MHA,来实现MySQL的集群。
如果要是做web项目的话,则可以使用LVS+Keepalived来实现。也可以使用Nginx做反向代理。
现在比较火的可能是虚拟化,就是配置一台高配服务器,在其中运行docker或者openstack等虚拟化技术也可以实现集群的功能,有个弊端就是宿主机一旦故障,整个业务全部瘫痪,当然,这样是比较节省开销的。
1 大型网站系统的特点
2 大型网站架构演化历程
21 初始阶段架构
问题:网站运营初期,访问用户少,一台服务器绰绰有余。
特征:应用程序、数据库、文件等所有的资源都在一台服务器上。
描述:通常服务器 *** 作系统使用 linux,应用程序使用 PHP 开发,然后部署在 Apache 上,数据库使用 Mysql,通俗称为 LAMP。汇集各种免费开源软件以及一台廉价服务器就可以开始系统的发展之路了。
22 应用服务和数据服务分离
问题:越来越多的用户访问导致性能越来越差,越来越多的数据导致存储空间不足,一台服务器已不足以支撑。
特征:应用服务器、数据库服务器、文件服务器分别独立部署。
描述:三台服务器对性能要求各不相同:应用服务器要处理大量业务逻辑,因此需要更快更强大的 CPU;数据库服务器需要快速磁盘检索和数据缓存,因此需要更快的硬盘和更大的内存;文件服务器需要存储大量文件,因此需要更大容量的硬盘。
23 使用缓存改善性能
问题:随着用户逐渐增多,数据库压力太大导致访问延迟。
特征:由于网站访问和财富分配一样遵循二八定律:80% 的业务访问集中在 20% 的数据上。将数据库中访问较集中的少部分数据缓存在内存中,可以减少数据库的访问次数,降低数据库的访问压力。
描述:缓存分为两种:应用服务器上的本地缓存和分布式缓存服务器上的远程缓存,本地缓存访问速度更快,但缓存数据量有限,同时存在与应用程序争用内存的情况。分布式缓存可以采用集群方式,理论上可以做到不受内存容量限制的缓存服务。
24 使用应用服务器集群
问题:使用缓存后,数据库访问压力得到有效缓解。但是单一应用服务器能够处理的请求连接有限,在访问高峰期,成为瓶颈。
特征:多台服务器通过负载均衡同时向外部提供服务,解决单一服务器处理能力和存储空间不足的问题。
描述:使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,提升系统的并发处理能力,使得服务器的负载压力不再成为整个系统的瓶颈。
25 数据库读写分离
问题:网站使用缓存后,使绝大部分数据读 *** 作访问都可以不通过数据库就能完成,但是仍有一部分读 *** 作和全部的写 *** 作需要访问数据库,在网站的用户达到一定规模后,数据库因为负载压力过高而成为网站的瓶颈。
特征:目前大部分的主流数据库都提供主从热备功能,通过配置两台数据库主从关系,可以将一台数据库服务器的数据更新同步到一台服务器上。网站利用数据库的主从热备功能,实现数据库读写分离,从而改善数据库负载压力。
描述:应用服务器在写 *** 作的时候,访问主数据库,主数据库通过主从复制机制将数据更新同步到从数据库。这样当应用服务器在读 *** 作的时候,访问从数据库获得数据。为了便于应用程序访问读写分离后的数据库,通常在应用服务器端使用专门的数据访问模块,使数据库读写分离的对应用透明。
26 反向代理和 CDN 加速
问题:中国网络环境复杂,不同地区的用户访问网站时,速度差别也极大。
特征:采用 CDN 和反向代理加快系统的静态资源访问速度。
描述:CDN 和反向代理的基本原理都是缓存,区别在于 CDN 部署在网络提供商的机房,使用户在请求网站服务时,可以从距离自己最近的网络提供商机房获取数据;而反向代理则部署在网站的中心机房,当用户请求到达中心机房后,首先访问的服务器时反向代理服务器,如果反向代理服务器中缓存着用户请求的资源,就将其直接返回给用户。
27 分布式文件系统和分布式数据库
问题:随着大型网站业务持续增长,数据库经过读写分离,从一台服务器拆分为两台服务器,依然不能满足需求。
特征:数据库采用分布式数据库,文件系统采用分布式文件系统。
描述:分布式数据库是数据库拆分的最后方法,只有在单表数据规模非常庞大的时候才使用。不到不得已时,更常用的数据库拆分手段是业务分库,将不同的业务数据库部署在不同的物理服务器上。
28 使用 NoSQL 和搜索引擎
问题:随着网站业务越来越复杂,对数据存储和检索的需求也越来越复杂。
特征:系统引入 NoSQL 数据库及搜索引擎。
描述:NoSQL 数据库及搜索引擎对可伸缩的分布式特性具有更好的支持。应用服务器通过统一数据访问模块访问各种数据,减轻应用程序管理诸多数据源的麻烦。
29 业务拆分
问题:大型网站的业务场景日益复杂,分为多个产品线。
特征:采用分而治之的手段将整个网站业务分成不同的产品线。系统上按照业务进行拆分改造,应用服务器按照业务区分进行分别部署。
描述:应用之间可以通过超链接建立关系,也可以通过消息队列进行数据分发,当然更多的还是通过访问同一个数据存储系统来构成一个关联的完整系统。
纵向拆分:将一个大应用拆分为多个小应用,如果新业务较为独立,那么就直接将其设计部署为一个独立的 Web 应用系统。纵向拆分相对较为简单,通过梳理业务,将较少相关的业务剥离即可。
横向拆分:将复用的业务拆分出来,独立部署为分布式服务,新增业务只需要调用这些分布式服务横向拆分需要识别可复用的业务,设计服务接口,规范服务依赖关系。
210 分布式服务
问题:随着业务越拆越小,存储系统越来越庞大,应用系统整体复杂程度呈指数级上升,部署维护越来越困难。由于所有应用要和所有数据库系统连接,最终导致数据库连接资源不足,拒绝服务。
特征:公共业务提取出来,独立部署。由这些可复用的业务连接数据库,通过分布式服务提供共用业务服务。
3 大型网站架构模式
31 分层
大型网站架构中常采用分层结构,将软件系统分为应用层、服务层、数据层:
分层架构的约束:禁止跨层次的调用(应用层直接调用数据层)及逆向调用(数据层调用服务层,或者服务层调用应用层)。
分层结构内部还可以继续分层,如应用可以再细分为视图层和业务逻辑层;服务层也可以细分为数据接口层和逻辑处理层。
32 分割
将不同的功能和服务分割开来,包装成高内聚低耦合的模块单元。这有助于软件的开发和维护,便于不同模块的分布式部署,提高网站的并发处理能力和功能扩展能力。
33 分布式
大于大型网站,分层和分割的一个主要目的是为了切分后的模块便于分布式部署,即将不同模块部署在不同的服务器上,通过远程调用协同工作。
分布式意味可以用更多的机器工作,那么 CPU、内存、存储资源也就更丰富,能够处理的并发访问和数据量就越大,进而能够为更多的用户提供服务。
分布式也引入了一些问题:
常用的分布式方案:
34 集群
集群即多台服务器部署相同应用构成一个集群,通过负载均衡设备共同对外提供服务。
集群需要具备伸缩性和故障转移机制:伸缩性是指可以根据用户访问量向集群添加或减少机器;故障转移是指,当某台机器出现故障时,负载均衡设备或失效转移机制将请求转发到集群中的其他机器上,从而不影响用户使用。
35 缓存
缓存就是将数据存放在距离最近的位置以加快处理速度。缓存是改善软件性能的第一手段。
网站应用中,缓存除了可以加快数据访问速度以外,还可以减轻后端应用和数据存储的负载压力。
常见缓存手段:
使用缓存有两个前提:
36 异步
软件发展的一个重要目标和驱动力是降低软件耦合性。事物之间直接关系越少,彼此影响就越小,也就更容易独立发展。
大型网站架构中,系统解耦的手段除了分层、分割、分布式等,还有一个重要手段——异步。
业务间的消息传递不是同步调用,而是将一个业务 *** 作拆分成多阶段,每个阶段间通过共享数据的方式异步执行进行协作。
异步架构是典型的生产者消费模式,二者不存在直接调用。异步消息队列还有如下特性:
37 冗余
大型网站,出现服务器宕机是必然事件。要保证部分服务器宕机的情况下网站依然可以继续服务,不丢失数据,就需要一定程度的服务器冗余运行,数据冗余备份。这样当某台服务器宕机是,可以将其上的服务和数据访问转移到其他机器上。
访问和负载很小的服务也必须部署 至少两台服务器构成一个集群,目的就是通过冗余实现服务高可用。数据除了定期备份,存档保存,实现 冷备份 外;为了保证在线业务高可用,还需要对数据库进行主从分离,实时同步实现 热备份。
为了抵御地震、海啸等不可抗因素导致的网站完全瘫痪,某些大型网站会对整个数据中心进行备份,全球范围内部署 灾备数据中心。网站程序和数据实时同步到多个灾备数据中心。
38 自动化
大型网站架构的自动化架构设计主要集中在发布运维方面:
39 安全
4 大型网站核心架构要素
架构 的一种通俗说法是:最高层次的规划,难以改变的决定。
41 性能
性能问题无处不在,所以网站性能优化手段也十分繁多:
42 可用性
可用性指部分服务器出现故障时,还能否对用户提供服务
43 伸缩性
衡量伸缩的标准就是是否可以用多台服务器构建集群,是否容易向集群中增删服务器节点。增删服务器节点后是否可以提供和之前无差别的服务。集群中可容纳的总服务器数是否有限制。
44 扩展性
衡量扩展性的标准就是增加新的业务产品时,是否可以实现对现有产品透明无影响,不需要任何改动或很少改动,既有功能就可以上线新产品。主要手段有:事件驱动架构和分布式服务。
45 安全性
安全性保护网站不受恶意攻击,保护网站重要数据不被窃取。
欢迎工作一到五年的Java工程师朋友们加入Java程序员开发: 721575865
群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!
个人建议 至少4台服务器,并且最好是以局域网方式互通(服务器4可以完全独立)
服务器1和服务器2都只放php代码程序,暴露在外网,分别当电信服务器和网通服务器
服务器3只放数据库,通过用户权限,仅允许被服务器1和2访问——不暴露在外网
服务器4只放附件,暴露在外网,所有的附件请求,都直接对这个服务器进行
需要指出的是,你如果作为网站管理者,每次管理数据库,都要用1或者2当跳板,才可以访问。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)