宝德服务器关闭cpu节能模式

宝德服务器关闭cpu节能模式,第1张

你是要问的是宝德服务器如何关闭cpu节能模式这个问题吧。首先根据电脑开机画面提示的bios按键快捷键进入bios界面中。然后切换选项到“power”,在“power”界面中找到“powersavings”。光标移到“powersavings”右边选项按回车选择节能模式,有四种选项,可以通过自身需要设置相应的节能模式。最后按f10保存刚刚更改的设置并点击Yes退出,这样关闭cpu节能模式的问题就解决了。
开启节能模式好处是可以节能,增加续航时间,减少发热量,延长寿命。坏处有一点,就是负载量瞬间加大的时候可能会反应不过来。
为了在CPU空闲的时候节约能源,CPU可以接受命令进入lowpower模式。每个CPU有多个power模式,这些模式统称为c-states或者c-modes。而在一些case中,CPU节能会带一些不稳定的因素,如unstableissue或performanceissue,所以我们可以通过系统层面来disableCPU节能。

我们的研究表明,通过更加严格的管理,公司可以将数据中心的能效提高一倍,从而降低成本并减少温室气体的排放。具体而言,公司需要更积极地管理技术资产,提高现有服务器的利用率水平;公司还需要更准确地预测业务需求对应用程序、服务器和数据中心设施容量的推动效应,以便控制不必要的资本和运营支出。
数据中心的效率是一个战略问题。企业建造和运营数据中心花费的资金在公司IT预算中占的比例不断上升,导致用于急需技术项目的预算越来越少。数据中心建造计划是董事会一级的决策。同时,监管部门和外部利益相关方也越来越关注公司管理自身碳足迹的方式。采用最佳实践不仅有助于公司减少污染,还能够提高它们作为良好企业公民的形象。
IT成本高昂如今,公司进行的分析越来越复杂,客户要求实时访问账户,广大员工也在寻找新的技术密集型协作方法。因此,即使在经济放缓时,人们对于计算、存储和网络容量的需求也在继续增长。为了应对这一趋势,IT部门正不断增加计算资源。在美国,数据中心的服务器数量正在以每年约10%的速度增加。与此同时,在中国和印度等新兴市场,机构正在变得越来越复杂,更多的运营工作实现了自动化,同时有越来越多的外包数据业务在这里进行,因此数据中心的数量呈现出更快的增长态势。这种对计算资源无法抑制的需求,导致全球数据中心容量稳步上升。目前,这种增长并没有显露出即将结束的迹象,通常在经济衰退时期它只会进入温和增长状态。
这一增长已经导致了IT成本激增。如果将设施、存储设备、服务器和人员成本都计算在内,数据中心支出一般会占到企业IT总预算的25%。随着服务器数量不断增长,电价也正以高于收入和其他IT成本的速度攀升,上述比例只会日益提高。每年,运行这些设施的成本都在以高达20%的速度上升,而IT总支出的增长速度仅为6%,二者相差极为悬殊。
数据中心支出的不断增加,改变了许多企业的经济结构,尤其是金融、信息服务、媒体和电信公司等信息密集型企业。在过去5年中,成立一个大型企业数据中心所需的投资已经从15亿美元升至5亿美元。在IT密集型企业中,最大设施的造价正逼近10亿美元。这一支出挤占了新产品开发的资本,降低了某些数据密集型产品的经济效益,并降低了利润。此外,不断上升的能耗产生了更多、范围更广的碳足迹,导致了环境恶化。对于大多数服务行业,数据中心是企业最主要的温室气体排放来源。在2000到2006年间,用于存储和处理数据的电力翻倍,每个数据设施的平均耗电量相当于25万个家庭的总和。世界上共有4400万台服务器,消耗了总电力的05%。如今,数据中心的碳排放已经接近阿根廷和荷兰等国家的碳排放水平。仅仅在美国,到2010年数据中心的预计用电增长量就相当于要新建10座电厂的发电量。目前的预测显示,如果不对需求加以遏制,2020年全球数据中心的碳排放将是现在的4倍。
监管部门已经注意到这些发展趋势,正在督促公司拿出解决方案。美国环保署(EPA)建议,作为建立运营效率标准的第一步,大型数据中心应当使用能量计。同时,欧盟也发布了一套自愿执行的行为准则,其中介绍了以较高的能效运行数据中心的最佳实践。随着数据中心排放量的持续上升,政府可能会为了减排而施加更大的压力。
第2页:全面应对挑战全面应对挑战
在信息密集型机构中,许多部门和级别的人员都可以做出影响数据中心运营效率的决策。金融交易员可以选择运行复杂的蒙特卡洛(MonteCarlo)分析,而药物研究人员可以决定要将多少临床实验影像数据存储起来。负责应用程序开发的管理人员可以决定用多少编程工作来满足这些需要。服务器基础设施的管理人员可以做出设备采购决策。设施主管则可以决定数据中心的位置、电力供应,以及在预测的需求出现前安装设备的时间表。
上述决策通常是在孤立状态下做出的。销售经理可能会选择将交易由隔夜结算改为即时结算,金融分析师则可能希望为历史数据存储几份副本,他们完全没有考虑到这样做会对数据中心的成本造成什么影响。应用程序开发人员很少想到要对自身的工作进行优化,以将服务器用量降到最低,也很少考虑开发能够跨服务器共享的设计应用程序。购买服务器的管理人员可能会选择价格最低或他们最熟悉的产品。但是这些服务器也许会浪费数据中心的电力或空间。很多时候,管理人员会超额购买设备,以保证在最极端的使用情况下拥有足够的容量,而这会造成容量过剩。管理人员往往会建造有多余空间和高制冷容量的设施,以满足极端情况下的需求或应对紧急扩建。
这些决策在整个机构中累加起来,将对成本和环境造成重大影响。在许多情况下,公司可以在不降低自身数据管理能力的前提下,停用现有的部分服务器,并搁置购买新服务器的计划。这可以借助一些众所周知的技术来实现。比如虚拟化,这种技术实际上是通过寻找服务器的空闲部分来运行应用程序,以达到容量共享的目的。但是公司不一定会这样做,因为没有哪位高管能够承担“端对端”的责任。在机构内部,管理人员会以最符合自身利益的方式行事,这就造成大多数数据中心效率低下,每台服务器上常常只运行了一个软件应用程序。
我们分析了一家媒体公司的近500台服务器,其中利用率低于3%的占三分之一,而低于10%的则占三分之二。虽然有诸多用于跟踪使用情况的现成管理工具,但这家公司没有使用其中任何一种。从全球来看,我们估计服务器的日常利用率一般最高只有5%到10%而已,这造成了能源和资金的浪费。对此,数据中心管理人员一般会回答,配备这些服务器是为了在极端情况下提供容量,例如应付圣诞节前一天的购物潮。但一般来说,这一论断并不成立,因为数据显示:如果平均利用率极低,那么高峰时段的利用率也会很低。此外,数据设施的数量不断攀升,但所存放的服务器和相关设备有时仅占数据设施容量的一半,这说明有上亿美元的资本支出被浪费了。即使公司报告认为数据中心已经满载,但沿着数据中心的过道行走,经常会发现服务器机架上有很多空位,原先放在这些空位中的设备都已经淘汰。
之所以出现这种不一致的现象,部分原因在于预测数据中心需求的难度很高。运营的时间框架是一个问题。数据中心的设计和建造一般需要2年或更长时间,而预计的使用寿命至少为12年,因此容量是在业务部门产生实际需求之前就已经设定的。与此同时,对于业务决策如何互相影响,如何转化为对新应用程序的需求,以及需要多少服务器容量才能满足需求,还存在着认识不够全面的现象。例如,如果客户需求增长50%,许多公司很难预测出服务器和数据中心的容量是需要增加25%,还是增加100%。在极端情况下,我们发现一些设施在投入运营后常年处于半空状态;而另一些公司在建成一个数据中心之后,很快就发觉需要再建一个新的。
如今数据中心已经成为一项昂贵的资产,由此可以推断,财务绩效责任落实得十分糟糕。设施的财务和管理责任往往会落在不动产管理人员身上,而这些人基本不具备相关的专业技术知识,对于IT与核心业务问题的联系也缺乏深入的认识。同时,管理服务器运营的人员很少去了解关键运营支出的数据,例如耗电量或IT设备所占不动产的实际成本。相反,当IT管理人员决定购置更多的应用程序或新的服务器时,有时只会使用硬件初始成本和软件许可证费用等基本指标。计算实际成本时,需要考虑设施运营和租赁、电力使用、支持以及折旧等因素。这些费用可能是服务器初始购置成本的4到5倍。加上前面说到的孤立决策和责任问题,数据中心通常会添加额外的服务器作为保险措施,而很少讨论成本权衡或业务需求。在缺乏实际成本分析的情况下,过度建造、过度设计和效率低下就成了普遍现象。
第3页:改革运营方式改革运营方式
在研究之初,我们以为通过建造新的节能型数据中心,可为降低数据中心的成本和碳排放指出一条光明大道。新的设施可以发挥当前各种技术的优势,利用自然冷却方法和碳排放较低的电源。但我们还了解到,在降低成本和碳排放方面成效最显著的方法是改善公司现有数据中心效率低下的状况。通过改善资产管理,增强管理层的责任意识,并且为降低能源成本和碳排放设立清晰的目标,大多数公司都能够在2012年之前将IT能效提高一倍,并遏制其数据中心温室气体排放的增长。实际上,您无需另行建造就能获得最环保的数据中心。
积极管理资产
一家大型公司采用的做法表明,规范现有服务器和设施的使用就可能产生巨大的收益。这家公司原本的计划是,增加服务器的数量,并建造一个新的数据中心来容纳这些服务器和其他IT设备,以便满足自身在2010年的信息需求。该公司的董事会已经批准了这项计划,但这意味着企业在这一年会有大量的资本支出。于是,这家公司彻底修改了计划。它将关闭5000多台很少使用的服务器。通过对占公司应用程序总量15%的3700个应用程序进行虚拟化,可以将现役服务器的数量由25万台减少至2万台。公司还更换了一些较为陈旧的服务器,代之以能够将用电效率提高20%的产品。
这些调整使公司得以搁置原先的数据中心扩建计划,并因此节省了305亿美元的资本投资成本。由于服务器数量和耗电量的下降,运营支出预计将减少4500万美元,降低到7500万美元。考虑到停用和虚拟化因素,服务器运行时的平均容量利用率将由目前的56%升至91%。该公司仍然能够满足自身日益增长的数据需求,但是电力需求的减少,意味着未来4年内的二氧化碳排放将由591万吨削减至341万吨。
公司还可以通过对不断上升的数据需求加强管理来实现节约。对于应当保留多少数据,是否要缩减某些数据密集型分析的规模,业务部门应当审查相关的政策。一些交易的计算可以推迟,以降低服务器在高峰时段的利用率,也并不是所有企业信息都需要基于广泛备份的灾难恢复功能。
更好的预测和规划是提高数据中心效率的基础。公司应当跟踪自己对数据需求的预测与实际需求之间的差异,然后向能够最大限度减少预测偏差的业务部门提供奖励。数据中心的管理人员应尽可能全面了解未来的趋势,例如机构增长和业务周期等,然后将这一趋势与自身采用的模型结合起来。由数据中心、应用架构师和设施 *** 作人员提供的建议可以用于改善这些模型。一家全球通信公司制定了一套规划流程,将每个业务部门数据增长量的各种发展情况包括在内。虽然公司最终得出的结论是,它需要扩大容量,但是未来需求中有很大一部分可通过现有资产来满足,这比原计划节约了35%的资本支出。
许多机构并没有将数据中心看作一种稀缺的昂贵资源,而是将其当成了等待注水的水桶。为了避免这种趋势,公司在估算新服务器或附加应用程序和数据的成本时,可以采用实际拥有成本(TCO)核算法。业务部门、软件开发人员或IT管理人员在进行支出决策时,很少会将应用程序和服务器的生命周期运行成本考虑在内。提早计算这些成本,有助于限制过量的需求。
管理这些变化可能十分困难。大型机构中的许多人并没有意识到数据的成本。企业的每一个部门都会产生对于数据中心服务的需求。满足这些需求的责任分散在IT部门(包括运营和应用开发)、设施规划人员、共享服务团队和企业不动产职能部门身上。成本报告工作并没有统一的标准。
第4页:提高总体效率提高总体效率
作为数据中心改进计划的一部分,我们建议采用一项新的指标:企业数据中心平均效率(CADE)。与美国的企业燃料平均经济性(CAFE)里程标准类似,CADE考虑了数据中心内的设施能效、设施利用率和服务器利用率水平。将这些因素综合起来,就得到了数据中心的总体效率,即CADE(图)。减少了成本和碳排放的公司将提高自身数据中心的CADE分数。这就像在汽车行业中,出色的里程数能够提高CAFE评级一样。
为了给改进工作设立目标,我们将CADE分为五级。属于CADE第1级的数据中心运营效率最低;大多数机构最初可能都会被归入较低的级别。关闭利用率低下的服务器、采用虚拟化技术以及提高设施空间的使用效率,都将提高CADE分数。借助CADE,公司还可以对整个数据中心的设施进行基准比较分析,或者与竞争对手进行比较,也可以为管理人员设立绩效目标并加以跟踪。
在数据中心的需求管理方面,我们建议采用一种由首席信息官全权负责的新治理模型。在这种体制下,首席信息官能够更为透彻地了解各业务部门的数据需求;对于需要更多服务器或软件应用的新数据项目,他们可以强制要求将能耗和设施成本考虑到相应的投资回报计算中。我们还建议首席信息官采用一种新的指标来衡量改进情况,请参见副文“提高数据中心的效率”。通过强化责任,首席信息官将拥有更高的积极性来寻求改进,例如采用虚拟化技术和提高现有设施的利用率。由于这种模型将关键业务决策的更多责任集中在首席信息官身上,因此不但需要首席执行官的全力支持,而且要求机构转变以往对于业务部门的数据中心扩容请求有求必应的思维模式。此外,首席信息官还应当设定将数据中心的能效提高

A能耗的根源
云计算系统有几个不可或缺的部分。首先,它需要大量的硬件设备来存储并处理数据。这些硬件设备包括放置在机柜内的计算和存储服务器,以及处理器、内存、硬盘等服务器组件。其次,在服务器之间,服务器与用户之间需要连接,所以网络也必不可少,它是连接用户与计算、存储等云资源的桥梁。此外,数据中心还需要专门的软件来监控和管理云计算的基础设施,这些软件就是云管理系统(简称CMS)。最后,云服务商还需要安装合适的应用软件,帮助用户使用云服务。
这几个部分都需要消耗大量的能源,也都会损失和浪费很多能源,比如在夜间温度较低时,散热系统仍在全速运行,或者系统在运行,却没有为用户提供服务。2003年,单机柜服务器的功率密度在025千瓦到15千瓦之间,而到了2014年,这个数字上升至10千瓦,预计到2020年会上升至30千瓦。而且,大多数服务器空载时的功率超过峰值功率的50%,服务器的平均利用率一般只有10%到50%。因此,一部只以20%性能运行的服务器的能耗,可能相当于它满载时能耗的80%。考虑到仅在2013年最后一个季度,新服务器的出货量就超过250万台,提高服务器的能效就成为第一要务。
而在网络环节,主要有3个地方会消耗能源:数据中心内部的连接、不同数据中心间的网络连接,以及让外部用户访问的固定网络和无线网络。在目前的数据中心,网络成本占所有运营费用的10%,这个数字还可能随着互联网流量的增加上涨到50%。
如果服务器空载,就会耗费大量能源。如果网络架构不适合云应用,信息的传输途径也会发生改变,网络的某些部分就无法得到充分利用,能源浪费就会加剧。
由于信息技术的能耗越来越高,在数据中心的设备中,监控和管理云计算的基础设施就变得很重要,云管理系统的作用就是提高数据中心的能效。如果使用不当,云管理系统本身也会浪费能源。应用设备(如Java虚拟机)的运行通常都会产生日常能源消耗,如果应用设备性能不佳,就需要更多服务器,消耗更多的能源。
B硬件优化之路
提高能效的第一步是升级网络设备,增加节能模式,减少网络设施在未被充分使用时的耗电量。如果能把未使用的端口、连接和交换机完全关闭,它们就不会因为空转而耗能了。
升级后,设备的热载荷也会下降,这又会降低散热系统的能耗,提升系统的稳定性。不过,只调整网络设备是不够的,因为当网络连通性降低时,系统性能也会下降。所以,还需要调整网络结构,让网络流量可以沿着多个路径传播,或只通过少数几个高能耗的关键路径发送,而网络中的其他部分则进入低能耗模式。这种方案还可用于数据中心间的网络,充分挖掘网络带宽,因为批量传输所需的成本比单独传输要低。
除了降低数据传输的能耗,优化网络结构还可以降低基站的发射功率——基站是云端与终端之间传输信息的桥梁。连接手机的大型基站覆盖面积较大,基站和手机间的距离通常也很远,所以需要相当大的发射功率,才能保证大范围内的手机通信,但这样一来,能耗无疑很高。为了降低能耗,我们可以充分利用与用户更近的小型基站。现有的研究表明,在城市地区使用小型基站,可以使空载模式下的能耗降低至原来的1/46。
服务器和网络设备相似,如果可以根据负载自动调节功率和性能,就能降低能耗。今天的CPU、内存和硬盘都可以选择负载和空载两种模式,并相应调节电压和频率以降低能耗。为了延长硬盘空载时间,CPU会优先从缓存中读取信息,只有在缓存中找不到数据时,服务器才会访问硬盘。缓存本身也能优化甚至关掉部分未用缓存。最终,新的低功耗缓存技术可以和现有技术相结合,在保持性能的同时降低能耗。
服务器机柜的设计也会影响散热和供电的能效。研究人员发现,与使用机房空调相比,能对特定组件进行局部散热的服务器机柜有更好的节能效果。比如,通过一些特殊的冷却技术,可消除由处理器产生的热量。此外,还可以通过调节组件本身(比如调节内存数据吞吐量),避免热损失的发生。从供电环节开始限制能量输入,或对数据中心的能耗设置一个上限,也可以降低单一组件或整个服务器机架的能耗。最后,使用紧凑的服务器配置,直接去掉未使用的组件,也是减少能量损失的好办法。
C云管的秘密
使用云管理系统的主要目的,是对基础设施(包括服务器、虚拟机和应用程序)进行调度以实现负载平衡。虚拟机是体现云服务优越性的最佳范例,它借助软件模拟出计算机系统,具有硬件功能,可以在完全隔离的环境中运行。有几种虚拟机的使用方法能提高云计算的能效。首先,可以让虚拟机根据负载情况重新调配资源;其次,可以为虚拟机的布置选择能效最高的物理机;最后,可以将未充分利用的虚拟机迁移至数量更少的主机上,并把一直未使用的虚拟机关闭。
不过,这些步骤需要CPU软件功耗模式来实现。该模式下,软件和硬件彼此协调以共同调整能耗。而且,服务器本身也可以通过调整实际负载来降低能耗。研究表明,即便使用简单的试探法(比如在服务器持续空载一段时间后关闭服务器),也能节约大量能源。
下一步措施是在更宏观的范围内实施管理措施,比如合并多个数据中心。但是,这会增加虚拟机迁移所需的开销,在输入输出两端都要消耗能量。为了弄清楚合并数据中心能否提高能效,我们可以借助一些模拟工具,如CloudSim,它可以评估云计算管理系统消耗和节约的电量,并进一步比较服务质量的变化。显然,如果既能降低能耗,又不会影响用户使用云服务,这种合并就有利于降低云计算的能耗。云管理系统不仅可以控制服务器,还可以控制网络系统,甚至控制散热和供电,因为云管理系统“知道” 需要哪些资源,不需要哪些资源,因此可以选择合适的虚拟技术,并在服务器空载时关闭散热设备。
云管理系统的建立方式也很重要,采用模块化方式来建立云管理系统就很有优势,因为这允许技术人员在实际需要某个模块时加载相应模块。比如,在需要监控某些特定组件时,技术人员可以在原有系统中添加某些插件;而在不需要监控这些组件时,技术人员也可以终止运行这些插件。
同时,研究人员也在开发高能效的软件,降低应用程序在空载状态下的能耗。比如,限制用户远程唤醒服务器可以延长空载状态时间,尽量向用户发送消息而非让用户或客户端向云服务器主动发起请求,可以让软件在真正需要其运行之前保持休眠,对资源(如磁盘)的批量访问也可以减少不必要的唤醒。
不在现实世界部署高能效方案并没有看上去那么简单。服务器组件的低能耗模式只有在服务器长期空载的情况下才有益处,而这种情况在实际使用中并不常见。而且,尽管服务器在执行轻量级任务时的使用率很低,但为了满足访问高峰时的需求,仍有必要保持适当的“d性”。因此,可自我扩展的服务器组件必须与软件组件相关联,否则调节CPU模式的技术会被错误应用,导致CPU运行频率过低,应用程序的运行时间变长,最终导致CPU的整体能耗上升。另一个目标是让空载组件的能耗接近于零,这可以通过合并未充分利用的服务器来实现。
D治标又治本——整体解决方案
为云计算提供支持的数据中心是一套高度耦合的系统,几乎可以视作一台大型计算机。因此,除了从数据中心的每个部分着手,降低能耗之外,还得把整个数据中心视作一个整体,分析各个基础设施之间的相关性,进而寻找节能方案。
应用设备是云计算中可管理的最小单位,但它们的性能可以影响所需服务器的数量,从而产生多米诺效应,进一步影响网络规模和支持性的设备——比如散热和供电设备的数量。因此,为目标应用程序选择适当的硬件资源,可能会对数据中心的总体能耗产生重大影响。这里的实例包括,用GPU而不是CPU运行可以高度并行的应用程序(有些程序可以在成千上万个处理器上同时运行,节省运算时间)。和CPU相比,GPU上的计算单元非常密集,可以同时执行很多任务,更适合并行计算,同时能耗更低。
但是,使用新的硬件需要对应用程序进行更深的研究和更细致的分级,在特定的应用程序和潜在的硬件资源之间建立联系。云计算的实现需要多种基础设施的协同,这又需要建立一个灵活、全面、监控能力出色的云管理系统。作为最基本的要求,云管理系统必须要监测数据中心中正在运行的进程、硬件性能、运行状态、数据规模等多种信息。管理系统还要对分布在不同地理位置的数据系统进行优化,让不同的云设施合并。这些方法既需要单个数据中心中的软件和硬件实现良好的交互,也需要让全球各地的数据中心互换信息、负载和数据。
要实现这些目标还是要依靠网络,利用网络可以把计算资源和数据存储资源放在可以利用可再生能源或凉爽的地方,降低散热产生的能耗。当然,优化网络设备的同时也需要改进其他设备和组件。比如,数据和处理器距离用户很远且分布不均,会导致云服务的性能大打折扣,而采用好的设备和云管理系统能降低网络流量,也就可以解决这个问题。除了改进数据中心,将数据中心整合到云计算概念里能在更大规模上提升能效。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12816703.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存