样本数量:5500;
平均连接时间:21毫秒;
95%的样本连接时间低于33毫秒;
错误率:0%;
服务器吞吐量:每秒544次;
数据流量:每秒30053KB。
当然也可以用其他软件,不过大部分都是linux下的,windows下不多,我只试用过一个pylot,需要python支持,相对jemter功能更加简单,不过设置也简单。是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来 计算 使用的时间和完成的事务个数。
Tps即每秒处理事务数,包括了
1)用户请求服务器
2)服务器自己的内部处理
3)服务器返回给用户
这三个过程,每秒能够完成N个这三个过程,Tps也就是N;
Qps基本类似于Tps,但是不同的是,对于一个页面的一次访问,形成一个Tps;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入“Qps”之中。
例如:访问一个页面会请求服务器3次,一次放,产生一个“T”,产生3个“Q”
Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间 或者 并发数 = QPS平均响应时间要把这个问题扯清楚,我们首先要知道TPS是代表什么?
TPS代表服务器处理请求的能力。一般是指服务器每秒能处理的请求数。
那么怎么得出服务器每秒能处理的请求数呢?
我们进行性能测试时,需要模拟用户向服务器发送请求,如果服务器处理请求的能力越快,
那么就是响应时间越快,所以TPS就会越高。
但是随着我们启动越来越多的虚拟用户数,就会把服务器堵住,服务器因此处理速度会变慢,导致TPS降低。
所以TPS和响应时间的关系是:响应时间越短,TPS越高。响应时间越长,TPS越低。
更多实战小技巧可以到网络上找下黑马程序员相关视频,官网更有免费视频库直接看。一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。
单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间
QPS(TPS):每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
(很多人经常会把并发数和TPS理解混淆)
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
决定系统响应时间要素
我们做项目要排计划,可以多人同时并发做多项任务,也可以一个人或者多个人串行工作,始终会有一条关键路径,这条路径就是项目的工期。
系统一次调用的响应时间跟项目计划一样,也有一条关键路径,这个关键路径是就是系统影响时间;
关键路径是有CPU运算、IO、外部系统响应等等组成。tps,全称是tick per second,也就是每秒运行的游戏刻数。正常应该是20,即服务器50ms运行一刻(tick),当tps小于18时,卡顿会非常明显,当tps小于10时,游戏通常会卡顿到无法运行。区别:TPS是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。QPS是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。理解:系统整体处理能力取决于处理能力最低模块的TPS值。QPS是每秒的响应请求数,也即是最大吞吐能力。
TPS即每秒处理事务数,包括:”用户请求服务器”、”服务器自己的内部处理”、”服务器返回给用户”,这三个过程,每秒能够完成N个这三个过程,TPS也就是3。QPS基本类似于TPS,但是不同的是,对于一个页面的一次访问,形成一个TPS,但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入QPS之中。
访问一个页面会请求服务器3次,一次放,产生一个“T”,产生3个“Q”。一、QPS,每秒查询
QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。互联网中,作为域名系统服务器的机器的性能经常用每秒查询率来衡量。
二、TPS,每秒事务
TPS:是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。QPS vs TPS:QPS基本类似于TPS,但是不同的是,对于一个页面的一次访问,形成一个TPS;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入“QPS”之中。如,访问一个页面会请求服务器2次,一次访问,产生一个“T”,产生2个“Q”。
三、RT,响应时间
响应时间:执行一个请求从开始到最后收到响应数据所花费的总体时间,即从客户端发起请求到收到服务器响应结果的时间。响应时间RT(Response-time),是一个系统最重要的指标之一,它的数值大小直接反应了系统的快慢。
四、并发数
并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力。
五、吞吐量
系统的吞吐量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个request 对CPU消耗越高,外部系统接口、IO速度越慢,系统吞吐能力越低,反之越高。系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间。
QPS(TPS):(Query Per Second)每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间
并发数 = QPS平均响应时间
六、实际举例
我们通过一个实例来把上面几个概念串起来理解。按二八定律来看,如果每天 80% 的访问集中在 20% 的时间里,这 20% 时间就叫做峰值时间。
公式:( 总PV数 80% ) / ( 每天秒数 20% ) = 峰值时间每秒请求数(QPS)
机器:峰值时间每秒QPS / 单台机器的QPS = 需要的机器
1、每天300w PV 的在单台机器上,这台机器需要多少QPS?
( 3000000 08 ) / (86400 02 ) = 139 (QPS)
2、如果一台机器的QPS是58,需要几台机器来支持?
139 / 58 = 3
七、最佳线程数、QPS、RT
1、单线程QPS公式:QPS=1000ms/RT
对同一个系统而言,支持的线程数越多,QPS越高。假设一个RT是80ms,则可以很容易的计算出QPS,QPS = 1000/80 = 125
多线程场景,如果把服务端的线程数提升到2,那么整个系统的QPS则为 2(1000/80) = 25, 可见QPS随着线程的增加而线性增长,那QPS上不去就加线程呗,听起来很有道理,公司也说的通,但是往往现实并非如此。
2、QPS和RT的真实关系
我们想象的QPS、RT关系如下
实际的QPS、RT关系如下
3、最佳线程数量
刚好消耗完服务器的瓶颈资源的临界线程数,公式如下
最佳线程数量=((线程等待时间+线程cpu时间)/线程cpu时间) cpu数量
特性:
在达到最佳线程数的时候,线程数量继续递增,则QPS不变,而响应时间变长,持续递增线程数量,则QPS开始下降。
每个系统都有其最佳线程数量,但是不同状态下,最佳线程数量是会变化的。
瓶颈资源可以是CPU,可以是内存,可以是锁资源,IO资源:超过最佳线程数-导致资源的竞争,超过最佳线程数-响应时间递增。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)