密码学(cryptography): 通过将信息编码使其不可读,从而达到安全性。
算法 :取一个输入文本,产生一个输出文本。
加密算法 :发送方进行加密的算法。
解密算法 :接收方进行解密的算法。
对称密钥加密 (Symmetric Key Cryptography):加密与解密使用相同密钥。
非对称密钥加密 (Asymmetric Key Cryptography):加密与解密使用不同密钥。
密钥对 :在非对称加密技术中,有两种密钥,分为私钥和公钥,私钥是密钥对所有者持有,不可公布,公钥是密钥对持有者公布给他人的。
公钥 :公钥用来给数据加密,用公钥加密的数据只能使用私钥解密。
私钥 :如上,用来解密公钥加密的数据。
摘要 :对需要传输的文本,做一个HASH计算。
签名 :使用私钥对需要传输的文本的摘要进行加密,得到的密文即被称为该次传输过程的签名。
密码协议是指两个或两个以上的参与者为了达到某种特定目的而采取的一系列步骤。规定了一系列有序执行的步骤,必须依次执行。必须有两个或两个以上的参与者,有明确的目的。参与者都必须了解、同意并遵循这些步骤。
常见的密码协议包括IPSEC 协议、SSL 协议、密钥交换协议等。
密码是指描述密码处理过程的一组运算规则或规程,一般是指基于复杂数学问题设计的一组运算,其基本原理基于数学难题、可证明计算、计算复杂度等。主要包括:对称密码、公钥密码、杂凑算法、随机数生成。
在对称加密算法中,加密使用的密钥和解密使用的密钥是相同的,加密和解密都是使用同一个密钥,不区分公钥和私钥。
通信双方采用相同的密钥来加解密会话内容,即一段待加密内容,经过同一个密钥的两次对称加密后,与原来的结果一样,具有加解密速度快和安全强度高的优点。
国际算法:DES、AES。
国产算法:SM1、SM4、SM7。
非对称加解密算法又称为 公钥密码 ,其密钥是成对出现的。双方通信时,首先要将密钥对中的一个密钥传给对方,这个密钥可以在不安全的信道中传输;传输数据时,先使用自己持有的密钥做加密,对方用自己传输过去的密钥解密。
国际算法:RSA
国产算法:SM2
优点:
密钥分发数目与参与者数目相同,在有大量参与者的情况下易于密钥管理。
支持数字签名和不可否认性。
无需事先与对方建立关系,交换密钥。
缺点:
速度相对较慢。
可能比同等强度的对称密码算法慢10倍到100倍。
加密后,密文变长。
密码杂凑算法 :又称为散列算法或哈希函数,一种单向函数,要由散列函数输出的结果,回推输入的资料是什么,是非常困难的。
散列函数的输出结果,被称为讯息摘要(message digest)或是 摘要(digest) ,也被称为 数字指纹 。
杂凑函数用于验证消息的完整性, 在数字签名中,非对称算法对数据签名的速度较慢,一般会先将消息进行杂凑运算,生成较短的固定长度的摘要值。然后对摘要值进行签名,会大大提高计算效率 。
国际算法:MD5、SHA1、SHA2、SHA3
国产算法:SM3
2009年国家密码管理局发布的《信息安全等级保护商用密码技术实施要求》中明确规定,一、二、三、四级信息系统应使用商用密码技术来实施等级保护的基本要求和应用要求,一到四级的密码配用策略要求采用国家密码管理部门批准使用的算法。
2010年年底,国家密码管理局公开了SM2、SM3等国产密码算法。
2011年2月28日,国家密码管理局印发的2011145号文中明确指出,1024位RSA算法正在面临日益严重的安全威胁,并要求各相关企业在2012年6月30日前必须使用SM2密码算法
国家密码管理局在《关于做好公钥密码算法升级工作的函》中要求2011年7月1日以后建立并使用公钥密码的信息系统,应使用SM2算法;已经建设完成的系统,应尽快进行系统升级,使用SM2算法。
2014年底,国家密码管理局启动《重要信息系统密码应用推进总体研究课题》,确定十三五密码 科技 专项。
2017年11月底,国家密码管理局下发了《政务云密码支撑方案及应用方案设计要点》。
2017年国家密码管理局发布了42项金融和重要领域国产密码应用试点任务。
2018年,中共中央办公厅、国务院办公厅印发《金融和重要领域密码应用与创新发展工作规划(2018-2022年)。
2018年,为指导当时即将启动的商用密码应用安全性评估试点工作,国家密码管理局发布了密码行业标准GM/T0054-2018《信息系统密码应用 基本要求》。
2021年3月,国家市场监管总局、国家标准化管理委员会发布公告,正式发布国家标准GB/T39786-2021《信息安全技术信息系统密码应用基本要求》,该标准于2021年10月1日起实施。
SM1 算法是分组密码算法,分组长度为 128 位,密钥长度都为 128 比特,算法安全保密强度及相关软硬件实现性能与AES相当,算法不公开,仅以IP核的形式存在于芯片中。
算法集成于加密芯片、智能 IC 卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括政务通、警务通等重要领域)。
SM2椭圆曲线公钥密码算法是我国自主设计的公钥密码算法,是一种基于ECC算法的 非对称密钥算法, 其加密强度为256位,其安全性与目前使用的RSA1024相比具有明显的优势。
包括SM2-1椭圆曲线数字签名算法,SM2-2椭圆曲线密钥交换协议,SM2-3椭圆曲线公钥加密算法,分别用于实现 数字签名密钥协商 和 数据加密 等功能。
SM3杂凑算法是我国自主设计的密码杂凑算法,属于哈希(摘要)算法的一种,杂凑值为256位,安全性要远高于MD5算法和SHA-1算法。
适用于商用密码应用中的 数字签名 和 验证消息认证码的生成与验证 以及 随机数 的生成,可满足多种密码应用的安全需求。
SM4 分组密码算法 是我国自主设计的分组对称密码算法,SM4算法与AES算法具有相同的密钥长度分组长度128比特,因此在安全性上高于3DES算法。
用于实现数据的加密/解密运算,以保证数据和信息的机密性。软件和硬件加密卡均可实现此算法。
商用密码技术框架包括 密码资源、密码支撑、密码服务、密码应用 等四个层次,以及提供管理服务的密码管理基础设施。
密码资源层: 主要是提供基础性的密码算法资源。
密码支撑层: 主要提供密码资源调用,由安全芯片、密码模块、智能IC卡、密码卡、服务器密码机、签名验签服务器、IPSCE/SSL 等商密产品组成。
密码服务层: 提供密码应用接口,分为对称和公钥密码服务以及其他三大类。
密码应用层: 调用密码服务层提供的密码应用程序接口,实现数据的加解密、数字签名验签等服务。如应用 于 安全邮件、电子印章系统、安全公文传输、移动办公平台、可信时间戳等系统。
密码管理基础设施: 独立组件,为以上四层提供运维管理、信任管理、设备管理、密钥管理等功能。
完整的PKI系统必须具有权威认证机构(CA)、数字证书库、密钥备份及恢复系统(KMC)、证书作废系统(CRL)、应用接口(API)等基本构成部分,构建PKI也将围绕着这五大系统来着手构建。
CA 系统:Ca系统整个PKI的核心,负责证书的签发。CA首先产生自身的私钥和公钥(密钥长度至少为1024位),然后生成数字证书,并且将数字证书传输给安全服务器。、CA还负责为 *** 作员、安全服务器以及注册机构服务器生成数字证书。安全服务器的数字证书和私钥也需要传输给安全服务器。
CA服务器是整个结构中最为重要的部分,存有CA的私钥以及发行证书的脚本文件,出于安全的考虑,应将CA服务器与其他服务器隔离,任何通信采用人工干预的方式,确保认证中心的安全。
(1)甲使用乙的公钥对明文进行加密,生成密文信息。
(2)甲使用HASH算法对明文进行HASH运算,生成数字指纹。
(3)甲使用自己的私钥对数字指纹进行加密,生成数字签名。
(4)甲将密文信息和数字签名一起发送给乙。
(5)乙使用甲的公钥对数字签名进行解密,得到数字指纹。
(6)乙接收到甲的加密信息后,使用自己的私钥对密文信息进行解密,得到最初的明文。
(7)乙使用HASH算法对还原出的明文用与甲所使用的相同HASH算法进行HASH运算,生成数字指纹。然后乙将生成的数字指纹与从甲得到的数字指纹进行比较,如果一致,乙接受明文;如果不一致,乙丢弃明文。
SSL 协议建立在可靠的传输协议(如 TCP)之上,为高层协议提供数据封装,压缩,加密等基本功能。
即可以协商加密算法实现加密传输,防止数据防窃听和修改,还可以实现对端设备身份验证、在这个过程中,使用国密算法进行加密、签名证书进行身份验证、加密证书用于密钥交换
SSL协商过程:
(1)客户端发出会话请求。
(2)服务端发送X509证书(包含服务端的公钥)。
(3)客户端用已知Ca列表认证证书。
(4)客户端生成随机对称密钥,并利用服务端的公钥进行加密。
(5)双方协商完毕对称密钥,随后用其加密会话期间的用户最终数据。
利用SSL卸载技术及负载均衡机制,在保障通讯数据安全传输的同时,减少后台应用服务器的性能消耗,并实现服务器集群的冗余高可用,大幅度提升整个业务应用系统的安全性和稳定性。此外,借助多重性能优化技术更可缩短了业务访问的响应等待时间,明显提升用户的业务体验。
基于 数字证书 实现终端身份认证,给予密码运算实现本地数据的加密存储,数字证书硬件存储和密码运算由移动终端内置的密码部件提供。
移动应用管理系统服务器采用签名证书对移动应用软件安装包进行签名,移动应用管理系统客户端对签名信息进行验签,保障移动应用软件安装包的真实性和完整性。
移动办公应用系统采用签名证书对关键访问请求进行签名验证。
采用加密证书对关键传输数据和业务 *** 作指令,以及移动终端本地存储的重要数据进行加密保护。
移动办公系统使用商用密码,基于数字证书认证系统,构建覆盖移动终端、网络、移动政务应用的安全保障体系,实现政务移动终端安全、接入安全、传输安全和移动应用安全 。
通常意味着应用程序的数字签名无效或已过期。数字签名是一个用于验证应用程序身份和完整性的安全机制。签名认证失败可能会导致应用程序无法正常启动,或者在使用时出现错误。这种情况下,您可以尝试重新安装应用程序,或检查是否需要更新应用程序版本。如果问题仍然存在,您可能需要联系应用程序开发商或设备厂商以获取更多帮助。
另外,确保您的设备时间和日期设置正确,因为这也可以影响数字签名的验证RSA是一种非对称加密算法,常用来对传输数据进行加密,配合上数字摘要算法,也可以进行文字签名。
padding即填充方式,由于RSA加密算法中要加密的明文是要比模数小的,padding就是通过一些填充方式来限制明文的长度。后面会详细介绍padding的几种模式以及分段加密。
加密:公钥放在客户端,并使用公钥对数据进行加密,服务端拿到数据后用私钥进行解密;
加签:私钥放在客户端,并使用私钥对数据进行加签,服务端拿到数据后用公钥进行验签。
前者完全为了加密;后者主要是为了防恶意攻击,防止别人模拟我们的客户端对我们的服务器进行攻击,导致服务器瘫痪。
RSA使用“密钥对”对数据进行加密解密,在加密解密前需要先生存公钥(Public Key)和私钥(Private Key)。
公钥(Public key): 用于加密数据 用于公开, 一般存放在数据提供方, 例如iOS客户端。
私钥(Private key): 用于解密数据 必须保密, 私钥泄露会造成安全问题。
iOS中的Securityframework提供了对RSA算法的支持,这种方式需要对密匙对进行处理, 根据public key生成证书, 通过private key生成p12格式的密匙
首先我们要会生成RSA密钥文件,现在一步步的来给大家展示一下,如何生成我们所需的公钥和私钥文件:
$ openssl genrsa -out privatepem 1024
openssl:是一个自由的软件组织,专注做加密和解密的框架。
genrsa:指定了生成了算法使用RSA
-out:后面的参数表示生成的key的输入文件
1024:表示的是生成key的长度,单位字节(bits)
$ openssl req -new -key privatepem -out rsacertcsr
可以拿着这个文件去数字证书颁发机构(即CA)申请一个数字证书。CA会给你一个新的文件cacertpem,那才是你的数字证书。(要收费的)
$ openssl x509 -req -days 3650 -in rsacertcsr -signkey privatepem -out rsacertcrt
509是一种非常通用的证书格式。
将用上面生成的密钥privkeypem和rsacertcsr证书请求文件生成一个数字证书rsacertcrt。这个就是公钥
$ openssl x509 -outform der -in rsacertcrt -out rsacertder
注意: 在 iOS开发中,公钥是不能使用base64编码的,上面的命令是将公钥的base64编码字符串转换成二进制数据
在iOS使用私钥不能直接使用,需要导出一个p12文件。下面命令就是将私钥文件导出为p12文件。
$ openssl pkcs12 -export -out pp12 -inkey privatepem -in rsacertcrt
IOS客户端的加解密首先我们需要导入Securityframework,
在ios中,我们主要关注四个函数
RSA算法有2个作用一个是加密一个是加签。从这几个函数中,我们可以看到,我们第一种是使用公钥能在客户端:加密数据,以及服务器端用私钥解密。
第二个就是用私钥在客户端加签,然后用公钥在服务器端用公钥验签。第一种完全是为了加密,第二种是为了放抵赖,就是为了防止别人模拟我们的客户端来攻击我们的服务器,导致瘫痪。
(1)获取密钥,这里是产生密钥,实际应用中可以从各种存储介质上读取密钥 (2)加密 (3)解密
(1)获取密钥,这里是产生密钥,实际应用中可以从各种存储介质上读取密钥 (2)获取待签名的Hash码 (3)获取签名的字符串 (4)验证
(1)私钥用来进行解密和签名,是给自己用的。
(2)公钥由本人公开,用于加密和验证签名,是给别人用的。
(3)当该用户发送文件时,用私钥签名,别人用他给的公钥验证签名,可以保证该信息是由他发送的。当该用户接受文件时,别人用他的公钥加密,他用私钥解密,可以保证该信息只能由他接收到。
使用事例:
Demo链接原因:
一、检查你的K宝网银证书到期,一般是满一年就到期了,要到网点更换证书,再下载证书。
二、检查是否安装了二代K宝网银驱动程序找到对应的飞天诚信驱动,在农行的网站里下载即可,只有安装了驱动,证书才可识别到。
方法如下:
1、打开IE浏览器―工具―internet选项―安全―启动所有Activex的选项,使用较低的安全模式,对于IE80、90请同时关闭“启用安全模式”选项。
2、关闭杀毒软件和防火墙,该问题是由于该类软件对U盾驱动屏蔽导致的。
*** 作方法:
1、新版收银台:选择相应显示的yhk,若首次使用该卡,选择“使用新卡”,输入yhk号,选择“网上银行”即可。
2、旧版收银台:(以储蓄卡为例)选择储蓄卡—网上银行—选择对应银行。
3、到达银行页面,根据页面提示完成付款。这个错误信息就是CA签名验签没通过,验签没通过可能是你这边私钥签名,到CA那边用的证书验签不对应,也可能网路传输过程中数据被拦截篡改过。建议你把这个问题跟国税客服说一下,或者换一台机器换一个网络环境再试。不知道你是做开发的还是普通用户?如果是做开发的你就要先和国税服务端取得联系,这个情况可能出现你们用的加密算法不对也有可能的!
重庆CA???可能跟我有关系~~粗略地分析, 登录机制主要分为登录验证、登录保持、登出三个部分。登录验证是指客户端提供用户名和密码,向服务器提出登录请求,服务器判断客户端是否可以登录并向客户端确认。 登录认保持是指客户端登录后, 服务器能够分辨出已登录的客户端,并为其持续提供登录权限的服务器。登出是指客户端主动退出登录状态。容易想到的方案是,客户端登录成功后, 服务器为其分配sessionId, 客户端随后每次请求资源时都带上sessionId。
上述简易的登录验证策略存在明显的安全漏洞,需要优化。
客户端第一次发出登录请求时, 用户密码以明文的方式传输, 一旦被截获, 后果严重。因此密码需要加密,例如可采用RSA非对称加密。具体流程如下:
再仔细核对上述登录流程, 我们发现服务器判断用户是否登录, 完全依赖于sessionId, 一旦其被截获, 黑客就能够模拟出用户的请求。于是我们需要引入token的概念: 用户登录成功后, 服务器不但为其分配了sessionId, 还分配了token, token是维持登录状态的关键秘密数据。在服务器向客户端发送的token数据,也需要加密。于是一次登录的细节再次扩展。
在最原始的方案中, 登录保持仅仅靠服务器生成的sessionId: 客户端的请求中带上sessionId, 如果服务器的redis中存在这个id,就认为请求来自相应的登录客户端。 但是只要sessionId被截获, 请求就可以为伪造, 存在安全隐患。
引入token后,上述问题便可得到解决。 服务器将token和其它的一些变量, 利用散列加密算法得到签名后,连同sessionId一并发送给服务器; 服务器取出保存于服务器端的token,利用相同的法则生成校验签名, 如果客户端签名与服务器的校验签名一致, 就认为请求来自登录的客户端。
13 TOKEN失效
用户登录出系统
失效原理:
在服务器端的redis中删除相应key为session的键值对。
App因为要实现自动登陆功能,所以必然要保存一些凭据,所以比较复杂。
App登陆要实现的功能:
这里判断时间,主要是防止攻击者截取到加密串后,可以长久地利用这个加密串来登陆。
不用AES加密,用RSA公钥加密也是可以的。AES速度比RSA要快,RSA只能存储有限的数据。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)