AMD的发展历史

AMD的发展历史,第1张

计算产品

对于需要高性能计算和 IT 基础设施的企业用户来说, AMD 提供一系列解决方案。

o 1981年,AMD 287 FPU ,使用Intel 80287核心。

产品的市场定位和性能与Intel 80287基本相同。

也是迄今为止AMD公司 唯一生产过的FPU产品,十分稀有。

o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel 8080核心。

产品的市场定位和性能与Intel同名产品基本相同。

o AMD 386(1991年)微处理器,核心代号P9,有SX和DX之分,分别与Intel 80386SX和DX相兼容的微处理器。

AMD 386DX与Intel 386DX同为32位处理器。

不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器----内部总线32位,外部16位。

AMD 386DX的性能与Intel 80386DX相差无己,同为当时的主流产品之一。

AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。

o AMD 486DX(1993年)微处理器,核心代号P4,AMD自行设计生产的第一代486产品。

而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。

其它衍生型号还有486DE、486DXL2等,比较少见。

AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel。

o AMD 5X86(1995年)微处理器,核心代号X5,AMD公司在486市场的利器。

486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel也推出了高端的Pentium系列。

AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。

它是486级最高频的产品----334、133MHz,035微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。

o AMD K5(1997年)微处理器,1997年发布。

因为研发问题,其上市时间比竞争对手Intel的"经典奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD的市场份额大量丧失。

K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"经典奔腾"略强;浮点预算能力远远比不上"经典奔腾",但稍强于Cyrix 6x86。

综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。

另外,最高端的K5-RP200产量很小(惯例吧:)并且没有在中国大陆销售。

o AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。

是AMD在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。

它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX。

o K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。

为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。

"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。

当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。

而且大多数K6-2并没有锁频,加上025微米制造工艺带给我们的低发热量,能很轻松的超频使用。

也就是从K6-2开始,超频不再是Intel的专有名词。

同时,K62也继承了AMD一贯的传统,同频型号比Intel产品价格要低25%左右,市场销量惊人。

K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。

正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产:)。

K6 3D曾经有一款非标准的250MHz产品,但是在正式的K6-2系列中并没有出现。

K6-2的最低频率为200MHz,最高达到550MHz。

o AMD于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD推出的最后一款支持Super架构和CPGA封装形式的CPU。

K6-3采用了025微米制造工艺,集成256KB二级缓存(竞争对手Intel的新赛扬是128KB),并以CPU的主频速度运行。

而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。

因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。

oAMD于2001年10月推出了K8架构。

尽管K8和K7采用了一样数目的浮点调度程序窗口(sche ng window ),但是整数单元从K7的18个扩充到了24个,此外,AMD将K7中的分支预测单元做了改进。

global history counter buffer(用于记录CPU在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD在整数调度程序上的改进让K8的管线深度比Athlon多出2级。

增加两级线管深度的目的在于提升K8的核心频率。

在K8中,AMD增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。

oAMD于2007下半年推出K10架构。

采用K10架构的 Barcelona为四核并有463亿晶体管。

Barcelona是AMD第一款四核处理器,原生架构基于65nm工艺技术。

和Intel Kentsfield四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。

● Barcelona新特性解析:引入全新SSE128技术 Barcelona中的一项重要改进是被AMD称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。

对于128位的SSE *** 作,K8处理器需要将其作为两个64位指令对待。

也就是说,当一个128位 SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。

而Barcelona加宽了执行单元从64位到128位,所有128位的SSE *** 作不再需要进行解码分解为两个64位 *** 作,并且浮点调度器也可以支持这种128位 SSE *** 作,提高了执行效率。

提高SSE指令执行单元带宽的同时,也会带来一些新的变化,也可以说是新的瓶颈:指令存取带宽。

为了将并行处理器过程中解码数量最大化,Barcelona开始支持32字节每时钟周期的指令存取,而先前K8架构只支持16字节。

32字节的指令存取带宽不仅对处理器SSE代码有帮助,同时对于整数指令也有效果。

● Barcelona新特性解析:内存控制器再度强化 当年当AMD将内存控制器集成至CPU内部时,我们看到了崭新而强大的K8构架。

如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。

Intel Xeon服务器所有使用的FB-DIMM内存一大优势是,可以同时执行读和写命令到AMB,而在标准的DDR2内存中,你只能同时进行一个 *** 作,而且读和写的切换会有非常大的损失。

如果是一连串的随机混合执行的话,将会带来非常严重的资源浪费,而如果是先全部读然后再转换到写的话,就可以避免性能的损失。

K8内存控制器就采用读取优先于写的策略来提高运行效率,但是Barcelona则更加智能化。

但是读取的数据会被先存放在buffer中,而不采用先直接执行写,但当它的容量达到了极限就会溢出,为了避免这种情况,在此之前才对读写之间进行切换,同时可以带来带宽和延迟方面效率的提高。

K8核心配备的是128-bits宽度的单内存控制器,但是在Barcelona中,AMD把它分割成两个64-bit,每个控制器可以独立的进行 *** 作,因此它可以带来效率上的不小提升,尤其是在四核执行的环境下,每个核心可以独立占有内存访问资源。

Barcelonas中集成的北桥部分(注意不是主板北桥)也被设计成更高的带宽,更深的buffers将允许更高的带宽利用率,同时北桥自身已经可以使用未来的内存技术,比如DDR3。

内存控制器的预取功能是运用相当广泛、十分重要的一项功能。

预取可以减少内存延迟对整体性能的负面影响。

当NVIDIA发布nForce2主板时,重点介绍的就是nForce2芯片组的128位智能预取功能。

Intel在发布Core 2处理器之时也强调了CORE构架每核心拥有三个预取单元。

K8构架中每个核心设计有2个预取器,一个是指令预取器,另一个是数据预取器。

K8L构架的Barcelona保持了2个的数量,但在性能上有了较大的改进。

一个明显的改进是数据预取器直接将数据寄存入L1缓存中,相比K8构架中寄存入L2缓存的做法,新的数据预取器准确率更高,速度更快,内存性能及CPU整体性能将得益于此。

● Barcelona新特性解析:创新——三级缓存 受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。

处理器整合内存控制器可以说是一项杰作,拥有整合内存控制器的K8构架仅依靠512KB的L2缓存就能够击败当时的对手Pentium 4。

直到现在的Athlon 64 X2也依然保持着Intel 2002年就已过时的512KB L2缓存。

现在Core 2已经拥有了4MB的L2缓存,看来Intel和AMD之间的缓存差距还将保持,因为Barcelona的L2缓存依然是512KB。

相比之下,Intel四核的Kentsfield芯片拥有8MB的L2缓存,而2007年末上市的新型Penryn芯片将拥有12MB的L2缓存。

Barcelona的缓存体系和K8构架有一定的相似之处,它的四颗核心各拥有64KB的L1缓存和512KB的L2缓存。

从简化芯片设计的角度来看,四核心共享巨大的L2缓存对K8L构架而言并不合适,所以AMD引入了L3缓存,得益于65nm工艺,Barcelona在一颗晶圆上集成四颗核心外,还集成了一块2MB容量的L3缓存。

也就是说L3缓存与4颗内核同样原生于一块晶圆,其容量为最小2M起跳。

同L2缓存一样,L3缓存也是独立的,L1缓存的数据和L3缓存的数据将不会重复。

Barcelona的缓存工作原理是:L2缓存是作为L1缓存的备用空间。

L1缓存储存着CPU当前最需要的数据,而当空间不足时,一些不是最重要的数据就转移到L2缓存中。

而当未来再次需要时,则从L2缓存中再次转移到L1缓存中。

新加入的L3缓存延续了L2缓存的角色,四颗核心的L2缓存将溢出的数据暂时寄存在L3缓存中。

L1缓存和L2缓存依然分别是2路和16路,L3缓存则是32路。

快速的32路L3缓存不仅可以更好的满足多任务并行,而且对单任务的执行也有着较大积极作用。

尤其在3D运用方面,2MB的L3缓存将对性能产生极大的推进作用。

AMD全新45nm的Shanghai架构 2008年11月13日,AMD公司宣布其代号为“上海”的新一代45nm四核皓龙处理器已经广泛上市。

“上海”性能最高提升达35%,而空载时的功耗可显著降低35%。

新一代四核AMD皓龙处理器采用创新的设计,能够带来更高的虚拟化性能和每瓦性价比,帮助数据中心提高效率,降低复杂性,从而最大限度地满足IT管理者的需要,以更低的投入实现更高的产出。

AMD公司负责计算解决方案业务的高级副总裁Randy Allen表示:“新一代四核AMD皓龙处理器是在正确的时间诞生的一款正确的产品。

堪称完美的提前推出,使之成为x86服务器性能的新王者。

通过与OEM厂商和解决方案供应商等合作伙伴的紧密合作,AMD的创新技术在满足企业用户目前最基本需求的同时,还为其未来发展做好准备。

自4年前AMD推出世界首款x86双核处理器以来,这一增强的新一代皓龙处理器带来了AMD产品性能和每瓦性价比的最大提升。” 领先的性能满足当今最迫切的商务需求 数据中心的管理者们面对日益增长的压力,诸如网络服务、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。

迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。

最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。

卓越的虚拟化性能 具有改进的AMD直连架构和AMD虚拟化技术(AMD-V(TM)),45nm四核皓龙处理器成为已有的基于AMD技术的虚拟化平台的不二选择,目前全球的OEM厂商已基于上一代AMD四核皓龙处理器推出了9款专门为虚拟化应用而设计的服务器。

新一代处理器可提供更快的虚拟机转换时间,并优化快速虚拟化索引技术(RVI)的特性,从而提高虚拟机的效率,AMD的AMD-V(TM)还可以减少软件虚拟化的开销。

无与伦比的性价比 与历代的AMD皓龙处理器相比,新一代四核皓龙处理器带来了前所未有的性能和每瓦性能比显著增强,包括: o 以与上代四核皓龙处理器相同的功耗设计,大幅提高CPU时钟频率。

这得益于处理器设计增强、AMD业界领先的45nm沉浸式光刻技术和超强的处理器设计与验证能力。

o L3缓存容量提高200%,达到6MB,增强虚拟化、数据库和Java等内存密集型应用的性能。

o 支持DDR2-800内存,与现有AMD皓龙处理器相比内存带宽实现了大幅提高,并且比竞品使用的Fully-Buffered DIMM具有更高的能效。

o 即将推出的超传输总线(TM)30 (HyperTransport(TM) 30)技术将进一步增强AMD革命性的直连架构,计划于2009年2季度将处理器之间的通信带宽提高到176GB/s。

无可匹敌的节能特性 AMD皓龙处理器业已带来了业界领先的X86服务器处理器每瓦性价比,与之相比,新一代45nm四核AMD皓龙处理器在空载状态的能耗可以大幅降低35%,而性能可提高达35%。

“上海”采用了众多的新型节能技术:AMD智能预取技术,可允许处理器核心在空载时进入“暂停”状态,而不会对应用性能和缓存中的数据有任何影响,从而显著降低能耗;AMD CoolCore(TM) 技术能够关闭处理器中非工作区域以进一步节省能耗。

在平台配置相似的情况下,基于75瓦AMD 四核皓龙处理器的平台,与基于50瓦处理器的竞争平台相比,具有高达30%的每瓦性能比优势。

相似平台配置下,基于AMD 四核皓龙处理器2380的平台,空载状态的功耗为138瓦;与之对比,基于英特尔四核处理器的平台在相同状态下的功耗则为179瓦。

基于AMD 四核皓龙2380型号处理器的平台,在SPECpower_ssj(TM)2008基准测试中取得761ssj_ops/每瓦的总成绩 (308,089 ssj_ops @ 100% 的目标负载),而英特尔四核平台为总成绩为561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目标负载) 4 前所未有的平台稳定性 作为唯一用相同的架构提供2路到8路服务器处理器的x86微处理器制造商,AMD新一代45nm四核皓龙处理器在插槽和散热设计与上代四核和双核AMD皓龙处理器兼容,延续了AMD的领先地位。

这可以帮助消费者减少平台管理的复杂性和费用,增强数据中心的正常运行时间和生产力。

新的45nm处理器适用于现有的Socket 1207插槽架构,未来代号为“Istanbul”的AMD 下一代皓龙处理器也计划使用相同插槽。

全球OEM 厂商支持 作为业内最易于管理和一致的x86服务器平台,由于采用AMD皓龙处理器,至少是部分原因,全球OEM和系统开发商能够迅速完成验证流程,并预计从本月起开始交付基于增强的四核AMD皓龙处理器的下一代系统。

本季度和2009年第一季度,基于增强的四核AMD皓龙处理器的系统的供应量有望迅速增长。

惠普工业标准服务器业务部营销副总裁Paul Gottsegen 表示:“通过采用基于新 ‘上海’处理器的 HP ProLiant服务器,客户可以降低成本,同时使能效和性能更上层楼。

在与AMD公司过去的4年合作中,我们为各种规模的客户提供了基于AMD皓龙处理器的平台,并取得了空前的成功。

初期反馈结果表明‘上海’将成为赢者。” Sun公司系统业务部执行副总裁John Fowler 表示:“ Sun的创新系统设计和Solaris与增强型四核AMD皓龙处理器相结合,将为虚拟化应用和系统整合带来具有难以置信的强大性能、可扩展性和高能效特性的x64平台。

在数据中心增长过程中,基于AMD增强型四核皓龙处理器的Sun服务器能够处理最复杂的数据群并灵活扩展。

而由于历代平台之间的连续性,客户有信心确保新系统与已部署的AMD皓龙系统实现无缝兼容。” 戴尔商用产品部高级副总裁Brad Anderson表示:“戴尔和AMD公司共同致力于为企业提供强大的全系列产品,以简化IT环境管理并降低管理成本。

我们的PowerEdge服务器专门设计以充分利用AMD芯片中集成的虚拟化特性。

这种紧密协作效果显著,2路和4路机架和刀片式PowerEdge服务器已经取得了破纪录的虚拟化性能。” IBM刀片式服务器副总裁Alex Yost表示:“自2003年以来,IBM就利用AMD皓龙处理器的性能和直连架构满足企业用户计算密集型的需求,并为其带来更多选择。

IBM正在AMD新处理器高能效和虚拟化的基础上进一步创新,为我们的客户带来更高的价值。” o 采用直连架构的 AMD 皓龙(Opteron)(TM) 处理器可以提供领先的多技术。

使IT管理员能够在同一服务器上运行32位与64位应用软件,前提是该服务器使用的是64位 *** 作系统。

o AMD 速龙(Athlon64),又叫阿斯龙(TM) 64 处理器可以为企业的台式电脑用户提供卓越的性能和重要的投资保护,具有出色的功能和性能,可以提供栩栩如生的数字媒体效果――包括音乐、视频、照片和 DVD 等。

o AMD 双核速龙(TM) 64(AthlonX2 64 )处理器可以提供更AMD双核速龙64处理器架构高的多任务性能,帮助企业在更短的时间内完成更多的任务(包括业务应用和视频、照片编辑,内容创建和音频制作等)。

这些强大的功能使其成为那些即将上市的新型媒体中心的最佳选择。

o AMD 炫龙(TM) 64(Turion64) 移动计算技术可以利用移动计算领域的最新成果,提供最高的移动办公能力,以及领先的 64 位计算技术。

o AMD 闪龙(TM)(Sempron64) 处理器不仅可以为企业提供出色的性价比,而且可以提高员工的日常工作效率。

o AMD 羿龙(TM)(phenom)处理器 全新架构的4核处理器,进一步满足用户需求(在命名中取消“64”,因为现今的CPU都是64位的,不必再标明)。

为满足消费者的不同需求,AMD近期也推出了3核羿龙产品! 对于消费者, AMD 也提供全系列 64 位产品。

o AMD 雷鸟(TM) (Thunderbird)处理器 o AMD 钻龙(TM) (Duron)处理器可以说是雷鸟的精简便宜版,架构和雷鸟处理器一样,其差别除了时脉较低之外,就是内建的L2 Cache,只有64K 。

嵌入式解决方案

AMD 的嵌入式解决方案以个人电脑以外的上网设备为目标市场,锁定的目标产品包括平板电脑、汽车导航及娱乐系统、家庭与小型办公室网络产品以及通信设备。

AMD Geode(TM) 解决方案系列不仅包括基于x86的嵌入式处理器,还包括多种系统解决方案。

AMD 的一系列 Alchemy(TM) 解决方案有低功率、高性能的 MIPS(TM) 处理器、无线技术、开发电路板及参考设计套件。

随着这些新的解决方案相继推出,AMD 的产品将会更加多元化,有助确立 AMD 在新一代产品市场上的领导地位。

精确生产技术

为了在当今竞争异常激烈的市场中获得成功,跨国电子公司需要值得信赖的供应商和合作伙伴来为他们按时按量地提供他们所需要的解决方案。

因此, AMD 采用了一种高效的、基于合作伙伴的研发模式,确保它的产品和解决方案可以始终在性能和功率方面保持领先。

借助于行业伙伴的技术和资源, AMD 为它的产品集成了先进的亚微米技术。

它的产品通常领先于行业总体水平,而且成本远低于平均成本。

为了在批量生产过程中无缝地采用这些先进的技术, AMD 开发和采用了数百种旨在自动确定最复杂的制造决策的专利技术。

这些业界独一无二的功能现在被统称为自动化精确生产( APM )。

它们为 AMD 提供了前所未有的生产速度、准确性和灵活性。

实际上X86架构是基础架构,X64架构是基于X86的,也可称为X86-64架构。具体介绍如下:\x0d\x86或80x86是英特尔Intel首先开发制造的一种微处理器体系结构的泛称。该系列较早期的处理器名称是以数字来表示,并以“86”作为结尾,包括Intel 8086、80186、80286、80386以及80486,因此其架构被称为“x86”。x86架构于1978年推出的Intel 8086中央处理器中首度出现,它是从Intel 8008处理器中发展而来的,而8008则是发展自Intel 4004的。8086在三年后为IBM PC所选用,之后x86便成为了个人计算机的标准平台,成为了历来最成功的CPU架构,如Pentium、Athlon。现在,Intel把x86-32称为IA-32,全名为“Intel Architecture, 32-bit”。\x0d\x86-64架构诞生颇有时代意义。当时处理器的发展遇到了瓶颈,内存寻址空间由于受到32位CPU的限制而只能最大到约4G。AMD主动把32位x86(或称为IA-32)扩充为64位。它以一个称为AMD64的架构出现(在重命名前也称为x86-64),且以这个技术为基础的第一个产品是单内核的Opteron和Athlon 64处理器家族。由于AMD的64位处理器产品线首先进入市场,且微软也不愿意为Intel和AMD开发两套不同的64位 *** 作系统,Intel也被迫采纳AMD64指令集且增加某些新的扩充到他们自己的产品,命名为EM64T架构(显然他们不想承认这些指令集是来自它的主要对手),EM64T后来被Intel正式更名为Intel 64。这两者被统称为x86-64或x64,开创了x86的64位时代。\x0d\关于32位系统与64位系统的比较,速度并不是唯一的考量因素。也不能因为数字上的变化,简单地认为64位CPU的性能是32位CPU的两倍。实际在目前阶段64位的应用程序并不多,即便有,很多也只是因为其32位的版本无法在64位 *** 作系统上运行而产生的。而没有真正做过64位优化的程序,性能上并不会带来太大的提升。相反,在32位的应用上 ,跑32位的CPU性能甚至会更强。另一方面,由于32位的Windows系统最大只支持325G的内存,而64位的Windows系统则可以最大支持128G的内存。所以,当电脑内存大于4G时,就要果断采用64位系统了。

分类: 电脑/网络 >> 硬件
问题描述:

是不是类似我们熟悉的P4一样,是芯片的代号?还要,它的性能怎么样?

解析:

X86就是采用cisc(Complex Instruction Set Computer,复杂指令架构计算机)架构的处理器.大多数CPU厂商(如AMD,Intel)生产的就是这种处理器.与采用RISC(Reduced ,精简指令架构计算机)架构的PowerPC(如苹果电脑)不同

在CISC处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个 *** 作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。

而RISC架构相对简单,它只要求硬件执行很有限且最常用的那部分指令,大部分复杂的 *** 作则使用成熟的编译技术,由简单指令合成。主要用在中高档服务器中,特别是高档服务器全都采用RISC指令系统的CPU。

AMD是美国著名的半导体公司,和英特尔齐名。是AMD自己的公司,公司位于美国加州旧金山湾区硅谷内的森尼韦尔市。

超微半导体公司(英语:Advanced Micro Devices, Inc;缩写:AMD、超微,或译“超威”,创立于1969年,是一家专注于微处理器及相关技术设计的跨国公司,总部位于美国加州旧金山湾区硅谷内的森尼韦尔市。

CPU产品线

1、AMD Ryzen(/razn/RYE-zen)是超微半导体开发并推出市场的x86微处理器品牌,AMDZen微架构的微处理器产品之一,其纯CPU产品线于2017年3月上市贩售,以Ryzen为品牌命名的APU产品线于2017年10月上架。

“Ryzen”品牌于2016年12月13日AMD的New Horizon峰会上发表。中文名为“锐龙”(2017年3月到8月称为“锐龙AMD Ryzen”,2017年8月之后称为“AMD锐龙”)。

2、Athlon是美国AMD公司的一种为x86计算机平台而设的微处理器,也是AMD最为成功的微架构之一,其研发负责人是前AMD首席执行官Dirk Meyer。其中文官方名称为“速龙”。

第一款Athlon处理器属于AMD的第七代(K7),与当时英特尔的Pentium III处理器竞争,及后出现Athlon XP、MP等。现时最新的Athlon处理器有属于Zen架构的Athlon APU系列。

3、AMD Epyc(或者全大写字母EPYC)是AMD推出的x86架构服务器微处理器产品线,中文名为“霄龙”,采用Zen微架构。

与2017年6月发表并开始供货,取代推出已有14年历史的Opteron系列。 2019年8月8日,基于Zen 2微结构7nm制程第二代EPYC处理器Rome发布。

机器之心报道

机器之心编辑部

「只需一张 GeForce 显卡,每个学生都可以拥有一台超级计算机,这正是 Alex Krizhevsky、Ilya 和 Hinton 当年训练 AI 模型 AlexNet 的方式。通过搭载在超级计算机中的 GPU,我们现在能让科学家们在 youxian 的一生之中追逐无尽的科学事业,」英伟达创始人兼首席执行官黄仁勋说道。

4 月 12 日晚,英伟达 GTC 2021 大会在线上开始了。或许是因为长期远程办公不用出门,人们惊讶地看到在自家厨房讲 Keynote 的黄老板居然留了一头摇滚范的长发:

如果你只是对他的黑色皮衣印象深刻,先对比一下 2019、2020 和 2021 的 GTC,老黄气质越来越摇滚。如此气质,黄仁勋今天推出的新产品肯定将会与众不同。

「这是世界第一款为 terabyte 级别计算设计的 CPU,」在 GTC 大会上,黄仁勋祭出了英伟达的首款中央处理器 Grace,其面向超大型 AI 模型的和高性能计算。

英伟达也要做 CPU 了

Grace 使用相对能耗较低的 Arm 核心,但它又可以为训练超大 AI 模型的系统提供 10 倍左右的性能提升。英伟达表示,它是超过一万名工程人员历经几年的研发成果,旨在满足当前世界最先进应用程序的计算需求,其具备的计算性能和吞吐速率是以往任何架构所无法比拟的。

「结合 GPU 和 DPU,Grace 为我们提供了第三种基础计算能力,并具备重新定义数据中心架构,推进 AI 前进的能力,」黄仁勋说道。

Grace 的名字来自于计算机科学家、世界最早一批的程序员,也是最早的女性程序员之一的格蕾丝 · 赫柏(Grace Hopper)。她创造了现代第一个编译器 A-0 系统,以及第一个高级商用计算机程序语言「COBOL」。计算机术语「Debug」(调试)便是她在受到从电脑中驱除蛾子的启发而开始使用的,于是她也被冠以「Debug 之母」的称号。

英伟达的 Grace 芯片利用 Arm 架构的灵活性,是专为加速计算而设计的 CPU 和服务器架构,可用于训练具有超过 1 万亿参数的下一代深度学习预训练模型。在与英伟达的 GPU 结合使用时,整套系统可以提供相比当今基于 x86 CPU 的最新 NVIDIA DGX 快 10 倍的性能。

目前英伟达自家的 DGX,使用的是 AMD 7 纳米制程的 Rome 架构 CPU。

据介绍,Grace 采用了更为先进的 5nm 制程,在内部通信能力上,它使用了英伟达第四代 NVIDIA NVLink,在 CPU 和 GPU 之间提供高达 900 GB/s 的双向带宽,相比之前的产品提升了八倍。Grace 还是第一个通过错误校正代码(ECC)等机制利用 LPDDR5x 内存系统提供服务器级可靠性的 CPU,同时提供 2 倍的内存带宽和高达 10 倍的能源效率。在架构上,它使用下一代 Arm Neoverse 内核,以高能效的设计提供高性能。

基于这款 CPU 和仍未发布的下一代 GPU,瑞士国家超级计算中心、苏黎世联邦理工大学将构建一台名为「阿尔卑斯」的超级计算机,算力 20Exaflops(目前全球第一超算「富岳」的算力约为 0537Exaflops),将实现两天训练一次 GPT-3 模型的能力,比目前基于英伟达 GPU 打造的 Selene 超级计算机快 7 倍。

美国能源部下属的洛斯阿拉莫斯国家实验室也将在 2023 年推出一台基于 Grace 的超级计算机。

GPU+CPU+DPU,三管齐下

「简单说来,目前市场上每年交付的 3000 万台数据中心服务器中,有 1/3 用于运行软件定义的数据中心堆栈,其负载的增长速度远远快于摩尔定律。除非我们找到加速的办法,否则用于运行应用的算力将会越来越少,」黄仁勋说道。「新时代的计算机需要新的芯片、新的系统架构、新的网络、新的软件和工具。」

除了造 CPU 的大新闻以外,英伟达还在一个半小时的 Keynote 里陆续发布了大量重要软硬件产品,覆盖了 AI、 汽车 、机器人、5G、实时图形、云端协作和数据中心等领域的最新进展。英伟达的技术,为我们描绘出了一幅令人神往的未来愿景。

黄仁勋表示,英伟达全新的数据中心路线图已包括 CPU、GPU 和 DPU 三类芯片,而 Grace 和 BlueField 是其中必不可少的关键组成部分。投身 Arm 架构的 CPU,并不意味着英伟达会放弃原有的 x86、Power 等架构,黄仁勋将英伟达重新定义为「三芯片」公司,覆盖 CPU、GPU 和 DPU。

对于未来的发展节奏,黄仁勋表示:「我们的发展将覆盖三个产品线——CPU、GPU 和 DPU,以每两年一次更新的节奏进行,第一年更新 x86,第二年就更新 Arm。」

最后是自动驾驶。「对于 汽车 而言,更高的算力意味着更加智能化,开发者们也能让产品更快迭代。TOPS 就是新的马力,」黄仁勋说道。

英伟达将于 2022 年投产的 NVIDIA 自动驾驶 汽车 计算系统级芯片——NVIDIA DRIVE Orin,旨在成为覆盖自动驾驶和智能车机的 汽车 中央电脑。搭载 Orin 的量产车现在还没法买到,但英伟达已经在为下一代,超过 L5 驾驶能力的计算系统作出计划了。

Atlan 是这家公司为 汽车 行业设计的下一代 SoC,其将采用 Grace 下一代 CPU 和下一代安培架构 GPU,同时也集成数据处理单元 (DPU)。如此一来,Atlan 可以达到每秒超过 1000 万亿次(TOPS)运算次数。如果一切顺利的话,2025 年新生产的车型将会搭载 Atlan 芯片。

与此同时,英伟达还展示了 Hyperion 8 自动驾驶 汽车 平台,业内算力最强的自动驾驶 汽车 模板——搭载了 3 套 Orin 中心计算机。

不知这些更强的芯片和系统,能否应付未来几年里人们对于算力无穷无尽的需求。在 GTC 2021 上,英伟达对于深度学习模型的指数增长图又更新了。「三年间,大规模预训练模型的参数量增加了 3000 倍。我们估计在 2023 年会出现 100 万亿参数的模型。」黄仁勋说道。

英伟达今天发布的一系列产品,让这家公司在几乎所有行业和领域都能为你提供最强大的机器学习算力。在黄仁勋的 Keynote 发表时,这家公司的股票一度突破了 600 美元大关。

「20 年前,这一切都只是科幻小说的情节;10 年前,它们只是梦想;今天,我们正在实现这些愿景。

英伟达每年在 GTC 大会上发布的新产品,已经成为了行业发展的风向。不知在 Grace 推出之后,未来我们的服务器和电脑是否会快速进入 Arm 时代。

amd科学家是什么水平:最新架构的先进,性能不错,就是ryzen系列,比如r7 1700,r5 1400,r3 1100。老一点的架构性能还可以,但是要把俩核当一核(带超线程)看,就是现在最新的速龙与apu,如a12 9800。其它的就是更老的了,性能差强人意(fx与以前的速龙与apu,就是打桩机与推土机架构的)或者略落伍(压路机与845)。Radeon 680M核显相当于NVIDIA GeForce MX 550显卡。
Radeon 680M核芯显卡存在于未被进行任何阉割的锐龙6000系列APU上,搭载它的型号有R9 6980HX,R9 6900HX,R9 6900HS,R7 6800H,R7 6800HS和R7 6800U。当然,由于型号与型号之间的体质差异,性能也同样有所区别。有的680M的跑分甚至是英特尔Iris 96EU核显的两倍。
Radeon 680M核显介绍
AMD Radeon 680M是Ryzen 6000系列笔记本电脑(例如Ryzen 9 6980HX)中的集成 GPU 。GPU 基于 RDNA2 架构,具有12个CU(= 768 个流处理器),频率高达2400MHz(取决于 CPU 型号)。
由于新架构、高核心数和增加的最大核心频率,Radeon 680M 的性能明显快于旧的 Radeon Vega 8 iGPU。因此,680M是2022年初最快的集成显卡。 与独立的Radeon 5300M(也是RDNA)相比,680M还是慢了很多。

在大概两个月前,网上就曝光了AMD新一代AM5插座的信息。作为AM4插座的后继产品,插座的类型将从PGA更改为LGA,AMD的这个举措得到了积极反馈。AM5为LGA 1718,正方形结构,40 40 mm的面积。随后还曝光了代号Raphael的锐龙处理器的渲染图,Zen 4架构的Raphael处理器很大机会成为第一个使用新插座的产品。

近日推特用户@ExecuFix再次放出了AM5插座的布局,AMD下一代处理器在安装过程中损坏的机率应该会更低。效果图显示了AM5插座新的锁定机制,通过简单的锁扣和夹子实现, *** 作方式相信不少用户都会觉得很熟悉。图上的处理器就是此前曝光的Raphael处理器,预计会在2022年下半年推出。

传闻Raphael处理器也会沿用Zen 3架构处理器加入3D V-Cache的设计,最高核心数量配置为16个,采用台积电5nm工艺制造,IOD则是6nm或7nm工艺,集成RDNA 2架构核显,提供28条PCIe Gen4通道,支持双通道DDR5-5200内存,可能会支持原生USB 40接口,TDP介乎于105W-120W之间,最高可配置170W的版本,并提供5GHz左右的频率。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12873749.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存