服务器的基本配置

服务器的基本配置,第1张

要组建一个网站服务器,服务器系统是必需的。现在基本上家用电脑都安装了WINDOWS系统,WINDOW系统自身带有IIS服务器,所以一般不必要去另外安装服务器了。只需要启动IIS服务器即可用于存放ASP程序网站了。如果要存放PHP程序网站需要搭建PHP+MYSQL环境
第二步:网站域名与服务器的动态解析
家用电脑一般的上网方式为“猫”或者路由器,那么每台电脑的IP地址是不断变化的。每次我们重启一下“猫”或者路由器就是生成一个新的IP地址。
如果我们要用自己的电脑做服务器来做网站就必须让网站域名解析到服务器IP上,可现在我们的电脑的IP是不断变化的,怎么解析呢?这时就需要使用“动态解析”了。“动态解析”就需要电脑先安装一个“动态解析器”。
1、首先应该配置服务器的外部接口。你应该已经知道如何做到这一点,并且可能已经完成了。如果你不这样做,那么现在就这样做。
2、现在我们调出内部接口。根据我们选择的数字,服务器的内部接口是19216840254。所以我们必须配置该接口。
3、设置路线。 我们现在可以与当地网络上的机器通信,但我们无法访问其他内部网络。这需要更多的代码行。
4、任何发往19216800网络的流量都应该输出eth1,并且它应该交给思科。我们的本地网络的流量仍然可以达到应有的位置,因为路由表按网络掩码的大小排序。如果我们在我们的网络中有其他内部网络,我们将为每个网络提供如上所述的线路。
5、现在我们可以访问我们可能需要的每台机器,我们需要编写允许或拒绝通过服务器访问的防火墙过滤规则。
6、对于家庭用户来说,一切都可以在这里工作。但是对于远程办公室,我们需要做一些路由。首先,我们需要告诉主路由器或思科,远程办公室是服务器的后面。因此,请指定Cisco上的路由,告知它将发往远程办公室的流量发送到服务器。现在,我们必须告诉服务器如何处理发往远程办公室的流量。
7、为此,我们在服务器上运行 route命令。唯一的问题是为了路线命令工作,链接必须是up,如果它关闭,路由将丢失。解决方案是在客户端连接时添加路由,或者更简单地,经常运行路由命令,因为运行它不是必要的问题。

利用mono+xsp架构aspnet环境,可以跑ASP项目
1、 安装准备(系统安装忽略)
#安装完CentOS后,首先更新系统
yum -y update
#然后安装相关的编译器和必备的软件
yum -y install bison pkgconfig glib2-devel gettext make libpng-devel libjpeg-devel libtiff-devel libexif-devel giflib-devel libX11-devel freetype-devel fontconfig-devel cairo-devel libtiff libtiff-devel libjpeg libjpeg-devel giflib giflib-devel libpng libpng-devel libX11 libX11-devel freetype freetype-devel fontconfig fontconfig-devel libexif libexif-devel libXft-devel ghostscript-devel gnome-doc-utils unzip
2 、下载安装所需要的软件包
统一下载到/usr/local/src下
wget >

CPU和内存CPU的类型、主频和数量在相当程度上决定着服务器的性能;服务器应采用专用的ECC校验内存,并且应当与不同的CPU搭配使用。

芯片组与主板即使采用相同的芯片组,不同的主板设计也会对服务器性能产生重要影响。

网卡服务器应当连接在传输速率最快的端口上,并最少配置一块千兆网卡。对于某些有特殊应用的服务器(如FTP、文件服务器或视频点播服务器),还应当配置两块千兆网卡。

硬盘和RAID卡硬盘的读取/写入速率决定着服务器的处理速度和响应速率。除了在入门级服务器上可采用IDE硬盘外,通常都应采用传输速率更高、扩展性更好的SCSI硬盘。对于一些不能轻易中止运行的服务器而言,还应当采用热插拔硬盘,以保证服务器的不停机维护和扩容。

磁盘冗余采用两块或多块硬盘来实现磁盘阵列;网卡、电源、风扇等部件冗余可以保证部分硬件损坏之后,服务器仍然能够正常运行。

热插拔是指带电进行硬盘或板卡的插拔 *** 作,实现故障恢复和系统扩容。

1、服务器处理器主频

服务器处理器主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1GHzItanium芯片能够表现得差不多跟266GHzXeon/Opteron一样快,或是15GHzItanium2大约跟4GHzXeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。

当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

2、服务器前端总线(FSB)频率

前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub(MCH),I/O控制器Hub和PCIHub,像Intel很典型的芯片组Intel7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到43GB/秒。

但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMDOpteron处理器,灵活的HyperTransportI/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMDOpteron处理器就不知道从何谈起了。

3、处理器外频

外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

4、CPU的位和字长

位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是“0”或是“1”在CPU中都是一“位”。

字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。

5、倍频系数

倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。

6、CPU缓存

缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。

L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。

其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MBL3缓存的Itanium2处理器,和以后24MBL3缓存的双核心Itanium2处理器。

但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MBL3缓存的XeonMP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12906521.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存