学生能去哪里租用便宜的gpu云服务器来进行深度学习计算?

学生能去哪里租用便宜的gpu云服务器来进行深度学习计算?,第1张

其实你可以去腾讯云去租用GPU云服务器来进行深度学习计算。腾讯云 GPU 实例类型众多,应用广泛,不同的实例类型有不同的产品定位。用户可以根据自身的应用场景,结合性能、价格等因素,选择最符合业务需求的实例。
比如你要进行深度学习计算,建议使用腾讯云GN8/GN10X 实例。GN10Xp配备Tesla V100 NVLink 32GB GPU,具有强大的单精度浮点运算能力,并具备较大的 GPU 板载内存。最大实例规格配置8个 V100 ,80个 vGPU 和320GB主机内存,是深度学习训练的首选。
GN10Xp 最大实例规格具备1256 TFLOPS 单精度浮点运算能力,支持 Tensor Core 加速,单卡搭载32GB显存,GPU 卡之间通过300GB/s的 NVLink 高速互连。强大的计算与数据吞吐能力大大缩短训练周期,使得复杂模型的快速迭代成为可能,人工智能相关业务得以把握先机。
腾讯云GPU云服务器,管理很简单GPU云服务器采用和云服务器CVM一致的管理方式,无需跳板机登录,简单易用。清晰的显卡驱动的安装、部署指引,免去高学习成本。而且节约成本,你无需预先采购、准备硬件资源,一次性购买,免除硬件更新带来的额外费用,有效降低基础设施建设投入。目前,腾讯云的GPU云服务器已全面支持包年包月计费和按量计费,你可以根据需要选择计费模式。

腾讯云GPU 云服务器(GPU Cloud Computing)是基于 GPU 的应用于深度学习、科学计算等多种 GPU 计算场景的快速、稳定、d性的计算服务。 GPU 云服务器提供和标准云服务器一致的管理方式,管理方便快捷。同时,GPU 云服务器还提供出色的图形处理能力和高性能计算能力,拥有极致的计算性能,有效解放用户的计算压力,提升产品的计算处理效率与竞争力。计费方式有两种,一直是按量,一直是包月包年,最好是找腾讯云蓝色航线去了解比较好,他们特别专业,也有最低优惠。不过缺点就是太热情了。

首先要确定一点是你的需求是什么,要用来干嘛,这里我简单列举一下最近云霸天下IDC服务商比较值得上手的几款给你做做参考:
推荐配置 点击购买服务器
一,1核2G 1M带宽=995元/年 2985元/3年(适合新手入门建站,同时在线100以内 )
⚠️价格相对于其它服务器来说这是特别低的一款,所以cpu性能上做了一定的限制,当然并不影响新手朋友建站使用;
二,2核4G 1M带宽=545元/年 1227元/3年(个人企业公司都行,同时在线100-200 )
⚠️这个款的服务器在同类型当中比较出色,因为服务器硬件配置2核4G基本满足中小型网站的搭建,带宽上面可以自由增加;
三,2核8G 5M带宽=2070元/3年(可放多个站点 并不影响带宽,同时在线1000-2000)
总的来说这是目前我个人觉得非常不错的一款,硬件、带宽都达到了一定的高度,做一个大型门户站也是没问题的,而且就以后的发展来说这一款要相对性价比高一些;

既然说了大型,首先要考虑的就是高用户并发的情况。这就需要结合你实际用户端应用场景,视频都双向传输和简单的低通量的文本交互一定不是一个概念。做大型的系统,还要考虑平时的情况和突发的高占用率情况。

首先我们先对应用做一个分类:

1高带宽消耗累应用

这个方面的代表就是直播相关或网络教学领域。直播系统的大体原理,主播手机采集音视频、编码,然后推送一个视频流给服务器(实际上是一个做了负载均衡的视频服务器矩阵组)。然后负责实时流媒体数据流接收的服务器,会将流媒体数据流推送给分发服务器(现在有现成的CDN,这样开发难度就小了很多。)然后观众申请观看的时候,分发服务器就会将所申请的时时流媒体推荐给客户。

这么粗糙的应用就可能包换用户端权限管理服务器组,业务调度服务器组,不同区域IDC建立的接入服务器组,不同区域IDC建立的分发服务器组,分等级的数据存储服务器组,ai内容审核服务器组(基于分流实时分析,预设内容审核规则),归档视频存储服务器组,短视频评级推荐服务器组,应用兴趣行为分析服务器组。客户在请求交互的时候可能还会有一些缓冲的队列呀,nosql之类的(redis,memcache)。各组服务器的规格和数量都是根据同时并发的情况定的,在程序开发好的时间可以通过自动化的方式模拟高并发,再通过查看分析瓶颈,而对前期的规划做出合适的调整。

有些时间还要实现不经过分发,交互直通以降低延时。pk的连线的时候,太高延时是接受不了的。这个就不继续展开了。

还有网盘类应用也也很多类似,只是延时要求没那么高。传统的视频网站也是基本相同原理。

传统的微博也是类似的分发机制。

2低延时需求型

这方面一般是以网络游戏为主。对于一些点电子竞技类的应用,做到80ms以下的低延时是必须。服务器的核心响应速度和带宽的低延时是重点。这种服务器最好可以独享一条专线,或者在虚拟网络系统中设置一个更高的优先级,数据线优先同行也会尽可能的降低延时。至于服务器组之间的vpc也应该有一个更高的通过优先级,以保证服务器之间的访问延时极地。这种应用服务器,最好要支持核心运算,不过这个要开发的架构支持。

再就是后期用户量大的时候,做更新包下载的时候会采用分发服务器(CDN)。

3高突发的缓冲

这种都是电商网站,平时就是讲全段应用服务器做彼此依赖,后端选择一个大吞吐,大并发的后端框架(京东使用的go语言对高并发和数据挖掘就有很多优势,我也刚开始学习)。这种系统网元架构就简单很多,传统的负载均衡后挂着不同模块的应用服务器组,然后经过缓冲服务器组,之后到达数据服务器组和APIGateway。

日常的应用都是没啥问题,都是因为一些节日或促销,或爆款等发生临时性数据 *** 作的拥堵。解决这种缓冲都方式有很多,比如临时快速读写缓存,消息队列等。甚至开发总线通信队列等待机制,很多解决方案。

现在系统本身的规划和后期都优化都有许多解决方案,现在的瓶颈往往是系统间的交互通信。

服务器种类各云服务商都称呼也不一致,总体说分为轻量应用服务器,负载均衡服务器,超算服务器(CPU和GPU两个方向,后者也常常被成为图形处理服务器。)数据服务器(常见的版本都有),文件服务器(nas和oss),分发服务器,缓冲服务器,数据分析服务器。我项目中使用大大类就这些了,也许有些我没用过和不知道的,希望大家在讨论区补充纠正。

希望对你认知有所拓展。

GPU 云服务器(GPU Cloud Computing,简称 GPU)是基于 GPU 应用的计算服务,具有实时高速的并行计算和浮点计算能力,一般适用于 3D 图形应用程序、视频解码、深度学习、科学计算等应用场景。

通常,GPU云服务器厂商提供和标准云服务器租用一致的管理方式,可以有效解放用户的计算压力,提升产品的计算处理效率与竞争力。

gpu云服务器的适用场景

适用于深度学习训练和推理,图像识别、语音识别等;计算金融学、地震分析、分子建模、基因组学、计算流体动力学等;高清视频转码、安防视频监控、大型视频会议等;三维设计与渲染、影音动画制作、工程建模与仿真(CAD/CAE)、医学成像、游戏测试等等。

gpu云服务器的使用性能

GPU云主机突破了传统GPU,能发挥极致性能,具有高并行、高吞吐、低时延等特点,在科学计算表现中,性能比传统架构提高几十倍。用户无需预先采购、准备硬件资源,可一次性购买,免除硬件更新带来的额外费用,能有效降低基础设施建设投入。

以上是关于GPU 云服务器的相关介绍。

市面上有很多GPU租赁平台,褒贬不一,价格不一,那么多云平台,我们应该怎么选择?选择一款好的租赁平台,主要看以下因素:1、价格2、服务3、配置在这里,推荐大家使用渲大师平台:渲大师是一个比较亲民的GPU算力平台,具备自建渲染农场,总 GPU 数量2000+,提供香港及中国内地的渲染农场,支持渲染及深度学习使用场景,配套主流的软件,模板,集群功能,快速提升算力。感兴趣点击此处

渲大师GPU算例平台可以加速您的AI深度学习、高性能计算、渲染测绘、云游戏、元宇宙等应用。高性价比,高稳定性,快速部署,d性租用,7x24技术支持,满足您所需。加速您的AI深度。在渲大师租用GPU,有以下几点优势:稳定性:具备高可靠性设计,多级备份以及自有备用电机,云服务器可靠性达999%易用性:可以预装深度学习、仿真计算、渲染环境,启动使用即可安全性:用户环境相互独立、环境隔离,业务互不干扰,充分保护客户隐私拓展性:拓展所需GPU资源环境保持不变无需重配,动态增减可用GPU满足业务需要高性价比:使用灵活,d性算费,可安分钟、小时计算,也可按套餐计算,有1天至365天阶梯折扣优惠,长租更划算目前,渲大师的GPU显卡是RTX3060和RTX3060 Ti显卡RTX 3060 12G :时租:2元/小时日租:432元 (18x24,等于时租打了9折)周租:2688元 (16x24x7,等于时租打了8折)月租:936元 (13x24x30,等于时租打了65折) 显卡RTX 3060Ti 12G :时租:24元/小时 日租:5184元 (216x24,等于时租打了9折)周租:32256元 (192x24x7,等于时租打了8折)月租:11232元 (156x24x30,等于时租打了65折)增值服务:根据用户需要,可指派专业技术人员提供模型代训练、咨询指导、代 *** 作等增值服务,加速您的项目进度感兴趣点击此处

亿万克是研祥高科技控股集团旗下全资子公司。研祥集团作为中国企业500强,持续运营30年。研祥集团全球49个分支机构,三个国家级创新平台,一直致力于技术创新引领行业发展,拥有超1100项授权专利,超1300项非专利核心技术。感兴趣点击此处

CPU:
首先确认您的模型是否需要CPU的计算力
深度学习训练,4GPU主流配置10核CPU,8GPU建议配置12核以上
内存:
显存的总和再加32G基本能满足需求(如4卡3090显存总和为96G,加32G等于128G)
硬盘:
机械盘不能满足大部分模型数据读取,推荐480G SSD做为系统盘,热数据用SSD存储,冷数据用机械盘
GPU:
Geforce系列可用于深度学习,Tesla系列 深度学习 高性能计算,Quadro系列绘图渲染
选择GPU服务器的配置不同、性能不同,价格自然不一样,你可以去官网了解一下


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12923783.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存