实验室没有服务器如何跑深度学习模型

实验室没有服务器如何跑深度学习模型,第1张

实验室没有服务器可以用Googlecolab跑深度学习模型。具体 *** 作步骤如下:
1、创建colab文件:进入Google云盘后,创建一个colab文件。第一次使用,会存在colab选项不显示的情况,点击关联更多应用即可。点击colab选项后会跳转到一个页面,与jupyter基本一模一样,可输入代码段,能连接服务器,有文件目录、colab文件名和使用选项。
2、配置colab环境:点击修改后点击笔记本设置就可以配置gpu了,硬件加速选择gpu,点击连接即配置好环境,将Googledrive的云空间连接起来,就有了drive文件夹,现在配置已经全部完成。
3、配置完成就可以使用Googlecolab跑深度学习模型了,gpu是k80计算速度慢,可以再新建一个colab文件,两三次就可以开到p100了。gpu用完的场景,需要1天时间恢复,可以再弄一个谷歌账号重复上述 *** 作。

个人觉得现在市面上的风冷已经不能满足深度学习GPU服务器的散热要求,需要转向新的技术以此满足深度学习训练服务器散热的需求。蓝海大脑液冷服务器 HD210 H系列突破传统风冷散热模式,采用风冷和液冷混合散热模式——服务器内主要热源 CPU 利用液冷冷板进行冷却,其余热源仍采用风冷方式进行冷却。通过这种混合制冷方式,可大幅提升服务器散热效率,同时,降低主要热源 CPU 散热所耗电能,并增强服务器可靠性。经检测,采用液冷服务器配套基础设施解决方案的数据中心年均 PUE 值可降低至 12 以下。是个不错的选择。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12956808.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存