伺服压力机中的传感器有什么作用?

伺服压力机中的传感器有什么作用?,第1张

据了解,伺服压力机通常是指采用伺服电机驱动控制的压力机。这些包括伺服压力机的金属锻造和耐火材料等。由于伺服电机的数控机床特性,有时也普遍称之为数控机床压力机。伺服压力机通过伺服电机驱动偏心轮,实现滑块的运动过程。通过复杂的电气化控制,伺服压力机可以随意编程滑块的行程、速度、压力,甚至可以在低速运转时达到压力机的标称吨位。定义、伺服压力机,又称电子压力机、伺服冲床、电子冲床,是在20世纪90年代国际上出现的一种完全不同于传统机械压力机概念的第三代压力机,它是高新技术(信息技术、自动控制、现代电工技术、新材料)与传统机械技术相结合,实现冲压设备的数字化控制。简而言之,它是由伺服电机驱动精密滚珠丝杠精密装配 *** 作。

车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。
现代汽车技术发展特征之一就是越来越多的部件采用电子控制。根据传感器的作用,可以分类为测量温度、压力、流量、位置、气体浓度、速度、光亮度、干湿度、距离等功能的传感器,它们各司其职,一旦某个传感器失灵,对应的装置工作就会不正常甚至不工作。因此,传感器在汽车上的作用是很重要的。
汽车传感器过去单纯用于发动机上,现在巳扩展到底盘、车身和灯光电气系统上了。这些系统采用的传感器有100多种。在种类繁多的传感器中,常见的有∶
:反映进气歧管内的绝对压力大小的变化,是向ECU(发动机电控单元)提供计算喷油持续时间的基准信号
:测量发动机吸入的空气量,提供给ECU作为喷油时间的基准信号;
:测量节气门打开的角度,提供给ECU作为断油、控制燃油/空气比、点火提前角修正的基准信号;
:检测曲轴及发动机转速,提供给ECU作为确定点火正时及工作顺序的基准信号;
:检测排气中的氧浓度,提供给ECU作为控制燃油/空气比在最佳值(理论值)附近的的基准信号;
:检测进气温度,提供给ECU作为计算空气密度的依据;
:检测冷却液的温度,向ECU提供发动机温度信息;
:安装在缸体上专门检测发动机的爆燃状况,提供给ECU根据信号调整点火提前角。
这些传感器主要应用在变速器、方向器、悬架和ABS上。
变速器:有车速传感器、温度传感器、轴转速传感器、压力传感器等,方向器有转角传感器、转矩传感器、液压传感器;
悬架:有车速传感器、加速度传感器、车身高度传感器、侧倾角传感器、转角传感器等;
下面来认识一下汽车上的主要传感器。
空气流量传感器是将吸入的空气转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一。根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田PREVIA旅行车)、卡门涡游式空气流量传感器(丰田凌志LS400轿车)、热线式空气流量传感器(日产千里马车用VG30E发动机和国产天津三峰客车TJ6481AQ4装用的沃尔沃B230F发动机)和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。
进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。国产奥迪100型轿车(V6发动机)、桑塔纳2000型轿车、北京切诺基(25L发动机)、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。
节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ECU),从而控制不同的喷油量。它有三种型式:开关触点式节气门位置传感器(桑塔纳2000型轿车和天津三峰客车)、线性可变电阻式节气门位置传感器(北京切诺基)、综合型节气门位置传感器(国产奥迪100型V6发动机)。
也称曲轴转角传感器,是计算机控制的点火系统中最重要的传感器,其作用是检测上止点信号、曲轴转角信号和发动机转速信号,并将其输入计算机,从而使计算机能按气缸的点火顺序发出最佳点火时刻指令。曲轴位置传感器有三种型式:电磁脉冲式曲轴位置传感器、霍尔效应式曲轴位置传感器(桑塔纳2000型轿车和北京切诺基)、光电效应式曲轴位置传感器。曲轴位置传感器型式不同,其控制方式和控制精度也不同。曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端,也有的安装于分电器(桑塔纳2000型轿车)。
爆震传感器安装在发动机的缸体上,随时监测发动机的爆震情况。目前采用的有共振型和非共振型两大类。

1,空气流量计,作用:检测吸入空气的量,并把检测结果转变为电信号。安装位置:空滤和节气门之间。
2,节气门位置传感器,作用:将节气门开度转化为电信号输出,以便微机控制喷油量。安装位置:节气门体上。
3,氧传感器,作用:检测排气中氧气浓度,控制空燃比。安装位置:排气管内
4水温传感器,作用:检测冷却液温度,修正空燃比。安装位置:冷却水套上
5,爆燃传感器,作用:检测发动机有无爆燃发生。安装位置:汽缸体上
6,曲轴位置传感器,作用:用于点火正时控制。安装位置:曲轴前端,凸轮轴前端及分电器内,车型不同,安装位置也不同
7,进气温度,压力传感器。作用:检测进气温度,压力。安装位置:节气门体后方。希望得到你的采纳,谢谢

1空气流量计,作用:检测吸入空气的量,并把检测结果转变为电信号。安装位置:空滤和节气门之间。

2节气门位置传感器,作用:将节气门开度转化为电信号输出,以便微机控制喷油量。安装位置:节气门体上。

3氧传感器,作用:检测排气中氧气浓度,控制空燃比。安装位置:排气管内

4水温传感器,作用:检测冷却液温度,修正空燃比。安装位置:冷却水套上

5爆燃传感器,作用:检测发动机有无爆燃发生。安装位置:汽缸体上

6曲轴位置传感器,作用:用于点火正时控制。安装位置:曲轴前端,凸轮轴前端及分电器内,车型不同,安装位置也不同

7进气温度,压力传感器。作用:检测进气温度,压力。安装位置:节气门体后方。

扩展资料

汽车技术发展特征之一就是越来越多的部件采用电子控制。根据传感器的作用,可以分类为测量温度、压力、流量、位置、气体浓度、速度、光亮度、干湿度、距离等功能的传感器,它们各司其职,一旦某个传感器失灵,对应的装置工作就会不正常甚至不工作。因此,传感器在汽车上的作用是很重要的。

汽车传感器过去单纯用于发动机上,已扩展到底盘、车身和灯光电气系统上了。这些系统采用的传感器有100多种。在种类繁多的传感器中,常见的有∶

1进气压力传感器:反映进气歧管内的绝对压力大小的变化,是向ECU(发动机电控单元)提供计算喷油持续时间的基准信号;

2空气流量计:测量发动机吸入的空气量,提供给ECU作为喷油时间的基准信号;

3节气门位置传感器:测量节气门打开的角度,提供给ECU作为断油、控制燃油/空气比、点火提前角修正的基准信号;

4曲轴位置传感器:检测曲轴及发动机转速,提供给ECU作为确定点火正时及工作顺序的基准信号;

5氧传感器:检测排气中的氧浓度,提供给ECU作为控制燃油/空气比在最佳值(理论值)附近的的基准信号;

6进气温度传感器:检测进气温度,提供给ECU作为计算空气密度的依据

7冷却液温度传感器:检测冷却液的温度,向ECU提供发动机温度信息;

8爆震传感器:安装在缸体上专门检测发动机的爆燃状况,提供给ECU根据信号调整点火提前角。

这些传感器主要应用在变速器、方向器、悬架和ABS上。

变速器:有车速传感器、温度传感器、轴转速传感器、压力传感器等,方向器有转角传感器、转矩传感器、液压传感器。

悬架:有车速传感器、加速度传感器、车身高度传感器、侧倾角传感器、转角传感器等;

参考资料百度百科-汽车传感器

一、传感器的定义
信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。
进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。
德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。
传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。
有源(a)和无源(b)传感器的信号流程:
无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。
各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。
常将传感器的功能与人类5大感觉器官相比拟:
光敏传感器——视觉�
声敏传感器——听觉
气敏传感器——嗅觉 �
化学传感器——味觉
压敏、温敏、流体传感器——触觉
与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感觉不到电磁场、无色无味的气体等。
对传感器设定了许多技术要求,有一些是对所有类型传感器都适用的,也有只对特定类型传感器适用的特殊要求。针对传感器的工作原理和结构在不同场合均需要的基本要求是:
高灵敏度 抗干扰的稳定性(对噪声不敏感) 线性 容易调节(校准简易)
高精度 高可靠性 无迟滞性 工作寿命长(耐用性)
可重复性 抗老化 高响应速率 抗环境影响(热、振动、酸、碱、空气、水、尘埃)的能力
选择性 安全性(传感器应是无污染的) 互换性 低成本
宽测量范围 小尺寸、重量轻和高强度 宽工作温度范围

二、传感器的分类
可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类
传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
按照其用途,传感器可分类为:
压力敏和力敏传感器 �
位置传感器
液面传感器 �
能耗传感器
速度传感器
� 热敏传感器
加速度传感器
� 射线辐射传感器
振动传感器
� 湿敏传感器
磁敏传感器
� 气敏传感器
真空度传感器
� 生物传感器�

以其输出信号为标准可将传感器分为:
模拟传感器——将被测量的非电学量转换成模拟电信号。�
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。�
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。�
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:

(1)按照其所用材料的类别分:�
金属�
聚合物�
陶瓷�
混合物�

(2)按材料的物理性质分:
� 导体
� 绝缘体
� 半导体
� 磁性材料�

(3)按材料的晶体结构分:�
单晶
� 多晶
� 非晶材料�

与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:�
(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。�
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。� (3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。�
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。下面给出了一些可用于传感器技术的、能够转换能量形式的材料。�

按照其制造工艺,可以将传感器区分为:
集成传感器:用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。�
薄膜传感器:通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。�
厚膜传感器:利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。 �
陶瓷传感器:采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。�
完成适当的预备性 *** 作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。每种工艺技术都有自已的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

随着社会的快速发展和国家政策对农业的大力支持,加之物联网技术的日渐成熟,物联网在传统农业领域的应用越来越广泛。农业是物联网技术的重点应用领域之一,也是物联网技术应用需求最迫切、难度最大、集成性特征最明显的领域。
近几年,物联网技术已被应用到农业的诸多领域,包括农业环境监测、温室大棚生产控制、节水灌溉、气象监测、产品安全与溯源、设备智能诊断管理等方方面面。
通过传感器所传输的数据,可以随时随地掌握作物的信息,对农作物进行远程管理,同时请专家或通过专家系统对作物的病虫害、长势等进行科学诊断与决策。现今,被提及最多的词语莫过于大数据、云计算。这些高精尖技术已被各个领域所熟知并运用。而与这两个词联系最为密切的另一个词是物联网技术。借势而行。传统农业面临发展机遇。
所有的人,都祝你快乐
广告
相对于国外的规模化种植,我国农业种植相对落后,目前正在从传统的个体种植作业向规模化的现代种植农业作业转型。
物联网技术是解决农业目前问题的关键。那么,什么是农业物联网?它在农业中有哪些应用?
对于物联网技术在农业中的应用,基础技术是传感器网络的完善。传感系统的完善与否直接影响着整个农业物联网技术的运行。
那么什么是农业物联网呢? 简单说,农业物联网具有几个关键的层面:前端生产信息的采集、信息的传输、信息的处理与应用。利用传感器采集土壤、气象、病虫害、农事 *** 作等生产过程中信息,将信息传输到云平台,通过云平台进行加工,为生产管理、质量追溯、农技服务等提供数据支撑是物联网技术在农业中的主要应用。
据了解,物联网技术已被应用到农业的诸多领域,包括农业环境监测、温室控制、节水灌溉、气象监测、产品安全与溯源、设备智能诊断管理等方方面面。
从应用层面来说,主要是从大田的种植、设施种植、畜禽养殖、水产养殖等的生产过程的应用。对于物联网在农业中的应用,目前应用最多的是生产过程中对于生产数据的采集和生产管理控制,以及流通环节的质量追溯。
在传统的以经验管理为主要模式的种植管理中,施肥、喷药、灌溉等由于经验不同,不同的种植人员会出现不同的种植结果,同时造成水资源浪费,过量施肥喷药等。随着规模化种植的不断推广,行业情形的不断变更,传统的经验管理不能适应规模化的生产作业模式,科学的先进管理方式必将取而代之。
应用物联网技术可以采集动植物信息,时时掌握动植物动态。传感器在农业生产中将起重要的作用。

打印机的光电传感器位于进纸通道的前端和打印头的下方,光电传感器的作用是将光信号转化为电信号,主要由三部分组成,分别是光源、光学通路、光电元件,如果打印机无法打印,可以检查传感器是否损坏。

打印机使用注意事项:1、打印机需要定期保养,比如打印头会老化,需要及时更换,打印头会堵塞,建议使用完打印机后将打印头清理干净。

2、打印机无法打印,可能是墨盒用完,需要更换新的墨盒,建议使用原装墨盒,第三方墨盒可能和设备不匹配,无法装入。

3、打印机分为不同的类型,可以根据使用需求购买。

4、不要随意拆卸打印机,可能导致设备零件丢失。

5、不要将细小物品放在打印机旁边,以免物品进入打印机,造成设备损坏。

资料拓展:光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/12970737.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存