随着虚拟人等应用不断发展成熟,对于计算的容量和实时性的要求不断提高。在这种趋势下,我们认为,边缘云计算有望成为元宇宙的重要支撑。作为云计算的延伸,边缘云计算被视为新一轮 科技 革命中必不可少的驱动因素。我们认为,元宇宙对网络传输提出了更大带宽、更低时延、更广覆盖的要求,需要借助边缘计算技术,以保障所有用户获得同样流畅的体验。
1全球数据增长迅速,集中式云计算已无法全面应对,边缘刚需场景涌现,目前中国物联网连接量将从2019年的55亿个增长至2023年的148亿个,年复合增长率达到281%。物联网感知数据量激增,数据类型愈发复杂多样,IDC预测到2025年中国每年产生的数据量将增长486ZB。
2芯片:FPGA同时满足边缘侧对性能、能耗及延迟的要求与集中式云计算不同,边缘云计算所处的物理环境复杂多样,很多时候空间、温度、电源系统都不是最佳的状态。但同时,边缘侧又要求极高的实时性和计算性能,传统CPU架构难以胜任边缘云的需求。英特尔、赛灵思等国际芯片巨头持续加码FPGA芯片,并推出支持CPU+FPGA异构计算的硬件平台,底层芯片产业的繁荣将支撑边缘云计算在各领域的应用,并不断迸发出新的活力。
35G技术的升级加码,Wi-Fi在室内场景形成互补,工信部数据显示,截至2020年中国已开通5G基站超718万个,实现地级以上城市及重点县市的覆盖。预计边缘云计算也会随着5G行业应用的普及分阶段落地。此外,Wi-Fi技术也在向着更高的吞吐量、更大的覆盖面积和更低的时延发展,Wi-Fi在室内场景中的优势使其成为5G的重要补充,两者将共同助力边缘云应用。
4云计算:企业上云常态化,云原生下沉实现云边端一体化,近年来云原生的热度持续高涨,包括容器、微服务、DevOps等在内的云原生技术和理念强调松耦合的架构和简单便捷的扩展能力,旨在通过统一标准实现不同基础设施上一致的云计算体验。相比于虚拟主机,云原生更适合边缘云计算的场景,可以为云边端提供一体化的应用分发与协同管理,解决边缘侧大规模应用交付、运维、管控的问题。
5“新基建”加码,工业互联网等标杆应用引领产业融合,“新基建”是十四五规划的重点方向,通过优化算力资源结构,将高频调用、低时延业务需求分配至边缘数据中心,推动5G承载网络的边缘组网建设,为将算力和网络下沉到边缘创造条件。同时,工业互联网、车联网、远程医疗等产业政策明确提及边缘计算,推动关键技术研究、标准体系建设及软硬件产品研发,促进边缘云在典型产业的融合应用。
应用场景
1视频加速及 AR/VR 渲染
基于移动边缘计算的智能视频加速可以改善移动内容分发效率低下的情况:于无线接入网移动边缘计算服务器部署无线分析应用(Radio Analyticsapplication),为视频服务器提供无线下行接口的实时吞吐量指标,以助力视频服务器做出更为科学的 TCP(传输控制协议)拥塞控制决策,并确保应用层编码能与无线下行链路的预估容量相匹配。另外,由于 AR/VR 信息(用户位置及摄像头视角)是高度本地化的,对这些信息的实时处理最好是在本地(移动边缘计算服务器)进行而不是在云端集中进行,以最大程度地减小 AR 延迟/时延、提高数据处理的精度。
2车联网(智能交通)
将移动边缘计算技术应用于车联网之后,可以把车联网云下沉至高度分布式部署的移动通信基站。移动边缘计算应用直接从车载应用(APP)及道路传感器实时接收本地化的数据,然后进行分析,并将结论(危害报警信息)以极低延迟传送给临近区域内的其他联网车辆,整个过程可在毫秒级别时间内完成,使驾驶员可以及时做出决策。
3工业互联网
边缘计算一直与工业控制系统有密切的关系,具备工业互联网接口的工业控制系统本质上就是一种边缘计算设备,解决工业控制高实时性要求与互联网服务质量的不确定性的矛盾。在基础设施层,通过工业无线和有线网络将现场设备以扁平互联的方式联接到工业数据平台中;在数据平台中,根据产线的工艺和工序模型,通过服务组合对现场设备进行动态管理和组合,并与 MES等系统对接。工业 CPS系统能够支撑生产计划灵活适应产线资源的变化,旧的制造设备快速替换与新设备上线。
4IoT(物联网)网关服务
采取边缘计算技术,边缘计算汇聚节点将被部署于接近物联网终端设备的位置,提供传感数据分析及低延迟响应。其中边缘计算服务器的计算能力和存储能力可为以下5个方面提供服务:业务的汇聚及分发;设备消息的分析;基于上述分析结果的决策逻辑;数据库登录;对于终端设备的远程控制和接入控制。
市场规模
预计2025年规模将超500亿元,年复合增长率达433%,信通院2020年5月调研数据显示,中国企业中仅有不足5%使用了边缘计算,但计划使用的比例高达442%。可以见得,虽然边缘云计算尚处在发展的萌芽期,但未来成长空间非常广阔。根据艾瑞咨询测算,2020年中国边缘云计算市场规模为91亿元,其中区域、现场、IoT三类边缘云市场规模分别达到37亿元、38亿元及16亿元。预计到2025年整体边缘云规模将以440%的年复合增长率增长至550亿元,其中区域边缘云将凭借互动直播、vCDN、车联网等率先成熟的场景实现增速领跑。2030年,中国边缘云计算市场规模预计达到接近2500亿元,2025年至2030年的年复合增长率相比前五年有所下降,现场边缘云中工业互联网、智慧园区、智慧物流等场景将在这一期间快速走向成熟。
相关上市公司
中兴通讯
中兴通讯面向运营商提供全场景MEC解决方案,打破传统封闭的电信网络架构,将移动接入网与互联网深度融合,在网络边缘满足客户的个性化需求。中兴通讯Common Edge边缘计算解决方案包括MEP能力开放平台、轻量化边缘云及面向边缘的全系列服务器和边缘加速硬件,提供通用硬件、专用集成硬件等多种硬件选择,深度融合OpenStack与Kubernetes,为上层MEC应用提供统一的边缘云管理系统,方便运营商因地制宜部署MEC。
网宿 科技
公司的边缘计算平台以云主机、容器、函数计算和网络四大平台作为技术底座,在边缘计算节点上部署边缘云主机、边缘云容器、边缘云函数、SD-WAN、边缘云安全等基础服务,以及内外部的各类应用模块,结合客户的业务场景及需求,尝试进行解决方案的整合和输出。
初灵信息
公司在 5G、AI 技术高速发展的背景下,持续构建以固移智能连接(5G+Fixed)+数据处理(DPI)+AI 为代表的三大边缘计算核心能力。公司多年深耕企业(行业)智能连接网络、垂直行业边缘应用型 DPI(安全、物联网类)、视频及其他行业(企业)的智能应用等技术,初步构成“云边端”协同的边缘计算生态。在市场端,公司除聚焦传统运营商市场外,积极拓展政企行业和大中企业市场,中标多个项目。公司三季度显示,公司与中国联通就边缘计算展开合作,开展了CUNOS在5G环境下的承载能力测试。
引用内容
1 研报《中国边缘云计算行业展望报告》
2 研报《边缘计算:算力网络重要环节,产业方兴未艾》
风险提示
1底层相关技术发展缓慢,边缘计算需求不及预期。
25G 进度不达预期。
蓝海大脑液冷服务器事业部经理表示:我统一认为如果抛开Jeston而言,一个边缘端的数据传输安全保障有多个维度,第一个是从硬件上,我们的硬件设备上会有一些安全保障措施和安全机制。安全机制包括设备本身的安全,例如我们可以增加一些加密的芯片等做一些数据安全的保密传输。第二个是在软件层面上,我们的SDK里有一些数据保密传输和保密加密的开发套件,大家可以关注下SDK。在整个数据传输过程中,不仅仅是我们的边缘端设备,包括我们的通讯设备以及服务器等,其实是一连串的。从end-to-end来看,信息从采集传输到最终的处理,每个环节其实都有安全保障。现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。
先定义一下边缘计算(wikepedia,2019):
这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。
在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。
而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。
增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:
- 低延迟:数据由近场产生,能快速回应
- 独立性:在没有网络连接下,系统亦能运作
- 合规性:无需传送用户资料,保护个人数据
- 简化数据:终端先处理部份数据,数据简化后才向云服务器传输
- 安全性:数据传输减少,减少网络安全风险
无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。
下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。
假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。
很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。
在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。
汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)
由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。
随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。
物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。
因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。工作原理不同。边缘计算网关的作用是将位于边缘端的设备与云端进行连接和通信,以实现数据采集、传输、存储和处理等功能,是一种重要的边缘计算设备,而RTU则主要用于现场数据的采集和控制,可通过控制器与上位机进行通信,实现自动化的现场控制,具有实时性和响应速度的优势。边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。边缘计算并非是一个新鲜词。作为一家内容分发网络CDN和云服务的提供商AKAMAI,早在2003年就与IBM合作“边缘计算”。作为世界上最大的分布式计算服务商之一,当时它承担了全球15-30%的网络流量。在其一份内部研究项目中即提出“边缘计算”的目的和解决问题,并通过AKAMAI与IBM在其WebSphere上提供基于边缘Edge的服务。[1]对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。边缘计算联盟ECC对于边缘计算的参考架构的定义,包含了设备、网络、数据与应用四域,平台提供者主要提供在网络互联(包括总线)、计算能力、数据存储与应用方面的软硬件基础设施。通俗讲解边缘计算
随着物联网越来越火,同时伴随着物联网而来的,就是各种概念和各种技术,其中一个就是边缘计算,当然还有雾计算。其实边缘计算和雾计算都差不多,雾计算只是和云计算是相对的。只是叫边缘计算呢,比较高大上吧。
下面我们要通俗地讲一讲边缘计算。
为什么要通俗的讲呢,怕如果不通俗,你听不明白。新的东西在出来的时候,往往是需要一个接纳和理解的过程。就像以前互联网刚出来的时候,很多人都不知道互联网,于是就得慢慢科普,让大家慢慢接受和理解呀。谁现在还解释什么是互联网呀。
而边缘计算也有一段时间了,只是随着物联网的发展,边缘计算的概念也开始流行起来。我们先看一段非通俗的介绍边缘计算的概念:
边缘计算,是一种分散式运算的架构。在这种架构下,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。
或者说,边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。
边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。
以上是我从网络文章摘抄的一段对于边缘计算的解释。整个解释基本都是专业术语,搞工控的你,看完这段话,你来告诉我什么是边缘计算。
作为一名参与研发产品边缘计算的程序员,我决定写一篇文章来通俗讲解一下这个边缘计算。
首先,我要举一个不太恰当的例子。
比如有一款APP,用户在使用这款APP的时候,就会收集用户的信息,比如收集这个用户的年龄,性别,手机号,地址位置,搜索记录等等信息,而收集这些信息主要是更好地分析这个用户的行为和感兴趣的东西,比如车,房子,书,美食等什么感兴趣。然后更为准确地为其投放内容及广告。
这个是很常见的一个功能,但是就是这样一个功能,怎么和边缘计算挂钩呢。
在边缘计算之前,就是云计算了。
如果是使用云计算,这款APP的行为是这样的:
APP收集到信息后,把所有的基本信息,上传到服务器中,然后由服务器来执行算法,计算和识别出用户的兴趣爱好,甚至可能推算出这个用户的消费能力。然后服务器就可以根据这个推算出来的结果,为用户投放其感兴趣的内容和广告。
如果是使用边缘计算,这款APP的行为就是这样:
APP收集了信息后,不上传到服务器中。然后由APP自己计算和识别出这个用户的兴趣和爱好,也可以推算出这个用户的消费能力,也就是服务器的计算功能,直接由APP来完成。然后服务器只需要问一下APP,哪个用户是有可能是年薪百万的,哪个用户是单身的。APP只需要告诉服务器说,这个一路向东用户很帅,而且还单身,喜欢旅游,写诗,可以为其投放相亲美女内容。
就这样,整个过程并没有服务器参与计算,服务器也没有参与收集信息。因为这个信息在APP本身收集和计算,并没有进行上传,所以也没有涉及信息收集。
而,这就是边缘计算。
也就是以前由服务器作计算的部分,现在改由信息采集的设备直接计算了,再把计算的结果,直接输出到服务器中。服务器只要结果,并不需要过程的数据。
下面我们就以回答问题的形式来通俗的聊一聊这个边缘计算吧。
所以,什么是边缘计算呢。
边缘计算,说白了,就是(服务器)云计算懒得算了,就这点数据,你在数据采集的时候,顺便自己算得了,什么都丢到服务器来算,很累的。于是,边缘计算就这么来了。
那么,工控领域行业中使用到边缘计算的都有哪呢
这个就太多了。随着很多PLC,控制器和触摸屏等都开始接入到物联网中,每个设备需要采集的信息不一样,有温度,湿度,产量,生产数据,运行状态等。而不同行业的参数指标,性能数据都不一样,这很难在服务器通过云计算来形成一套标准,这使得PLC,控制器等,都会用到边缘计算。
为什么以前的DTU,或者物联模块等不流行边缘计算,现在开始流行了呢。
因为现在的IoT使用的模块或者芯片的处理能力也越来越高,资源也比较丰富,随着一些芯片成本的下降,以及开发模式的简化,使得一些芯片或模块在处理基本的数据采集功能后,仍存在资源过剩及功能利用率低的情况,也就是一个100%的芯片或模块,你只使用了10%的来采集数据,那还有90%你可以用来作计算
那么,使用边缘计算的优势在哪里呢。
1 可以使得设备的支持数量提升几个数量级。
比如一个服务器有10000点血。而接入一个设备,就要消耗1点血,如果再对这个设备进行数据分析,需要消耗9点血。也就是接入并计算一个设备就需要10点血。那么这个服务器最多只能接入1000个设备就挂了。
如果服务器只负责接入设备,不进行计算和分析,那么接入一个设备,消耗1点血,由设备自己进行数据计算和分析,再输出结果。这时候服务器就可以接入10000个设备了。
没有使用边缘计算,服务器可以接1000个设备。
如果使用了边缘计算,服务器可以接10000个设备。提升了一个数量级。而对于一些复杂的设备,特别是一些工厂,现场作业等需要数据量多的,如果使用了边缘计算来给服务器节省空间和资源,这个优势更能体现出来了。
2 让计算变得更为灵活和可控
前面说到,接入设备的服务器很难做到统一的计算分析标准,因为物联网可是一个万物接入的网络,每一个设备采集的数据不一样。如果使用了边缘计算,就可以单独针对每一个设备进行相应的计算和分析。当然,如果相同的设备或者相同参数的,可以进行复制使用同一套计算标准或算法。如果将计算脚本开放出来给用户,用户就可以自定义去添加自己的计算公式和行为。
边缘计算的模式和拓扑结构是什么样的呢。
比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。
数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。
在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。
比如数据采集模块需要采集一个电表,电表能采集的数据有电流,电压,偏偏没有功率。当然现在的电表采集不到功率很少了,只是举例。
那怎么办呢,偏偏客户很想看到功率。那在没有边缘计算的时候,为了要看到功率,只好在云服务里,增加一定的计算规则,将采集到的电流和电压通过计算得到功率。如果有1000个电表,云服务器就要对这1000个电表进行计算。这就增加了云服务器的工作量和负担了。
如果有了边缘计算,那么在数据采集模块,就可以添加计算功能,直接将采集的电流和电压通过计算得到功率,只需要把功率上传给服务器就可以了。这样,即便有50000个电表,云服务也毫无计算压力,因为它并不需要计算。
这就是通俗的讲一讲边缘计算。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)