AI2021和AI2022的区别如下:
自2018年以来连续第四年发布。
报告从宏观经济、技术成熟度、AI劳动供给、行业和地域四大方面进行综合考量,评估中国人工智能发展现状,为推动产业AI化发展提供参考和行动指南。
算力基础设施建设体现一个地区对人工智能的综合投入程度,首次被作为地域评估的考虑因素。
报告指出,AI芯片呈现多元化发展趋势,AI芯片算力持续提升满足模型规模增长态势;中国AI服务器市场快速增长,中国厂商领跑全球,2020年全球AI服务器厂商浪潮、DELL、HPE市场份额位列前三,未来AI服务器将朝着多元开放、绿色节能的方向发展。AI与云的融合是必然趋势,预计到2025年,中国人工智能服务器公有云的占比将超过50%,私有云、政务云、行业云等也在蓬勃发展,混合IT是企业首选。算法模型发展愈加复杂,巨量模型将是规模化创新的基础,“源10”等巨量模型的出现,让构建大模型、提升AI处理性能成为发展趋势;应用场景已经从碎片化过渡到深度融合的一体化,从单点应用场景转换为多元化的应用场景。相比2020年,人工智能在金融、制造、能源 、公共事业和交通等行业体现的推动作用尤为显著;以智算中心为代表的算力基础设施,通过提供公共的算力、数据及算法服务,让算力服务易用,解决算力服务的供给问题。
选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。GPU服务器人工智能领域的应用也比较多。在教学场景中,对GPU虚拟化的要求比较高。根据课堂人数,一个老师可能需要将GPU服务器虚拟出30甚至60个虚拟GPU,因此批量Training对GPU要求比较高,通常用V100做GPU的训练。模型训练完之后需要进行推理,因此推理一般会使用P4或者T4,少部分情况也会用V100。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)