不管哪种DDoS攻击,,当前的技术都不足以很好的抵御。现在流行的DDoS防御手段——例如黑洞技术和路由器过滤,限速等手段,不仅慢,消耗大,而且同时也阻断有效业务。如IDS入侵监测可以提供一些检测性能但不能缓解DDoS攻击,防火墙提供的保护也受到其技术弱点的限制。其它策略,例如大量部署服务器,冗余设备,保证足够的响应能力来提供攻击防护,代价过于高昂。
黑洞技术
黑洞技术描述了一个服务提供商将指向某一目标企业的包尽量阻截在上游的过程,将改向的包引进“黑洞”并丢弃,以保全运营商的基础网络和其它的客户业务。但是合法数据包和恶意攻击业务一起被丢弃,所以黑洞技术不能算是一种好的解决方案。被攻击者失去了所有的业务服务,攻击者因而获得胜利。
路由器
许多人运用路由器的过滤功能提供对DDoS攻击的防御,但对于现在复杂的DDoS攻击不能提供完善的防御。
路由器只能通过过滤非基本的不需要的协议来停止一些简单的DDoS攻击,例如ping攻击。这需要一个手动的反应措施,并且往往是在攻击致使服务失败之后。另外,现在的DDoS攻击使用互联网必要的有效协议,很难有效的滤除。路由器也能防止无效的或私有的IP地址空间,但DDoS攻击可以很容易的伪造成有效IP地址。
基于路由器的DDoS预防策略——在出口侧使用uRPF来停止IP地址欺骗攻击——这同样不能有效防御现在的DDoS攻击,因为uRPF的基本原理是如果IP地址不属于应该来自的子网网络阻断出口业务。然而,DDoS攻击能很容易伪造来自同一子网的IP地址,致使这种解决法案无效。
防火墙
首先防火墙的位置处于数据路径下游远端,不能为从提供商到企业边缘路由器的访问链路提供足够的保护,从而将那些易受攻击的组件留给了DDoS攻击。此外,因为防火墙总是串联的而成为潜在性能瓶颈,因为可以通过消耗它们的会话处理能力来对它们自身进行DDoS攻击。
其次是反常事件检测缺乏的限制,防火墙首要任务是要控制私有网络的访问。一种实现的方法是通过追踪从内侧向外侧服务发起的会话,然后只接收“不干净”一侧期望源头发来的特定响应。然而,这对于一些开放给公众来接收请求的服务是不起作用的,比如Web、DNS和其它服务,因为黑客可以使用“被认可的”协议(如>
第三种限制,虽然防火墙能检测反常行为,但几乎没有反欺骗能力——其结构仍然是攻击者达到其目的。当一个DDoS攻击被检测到,防火墙能停止与攻击相联系的某一特定数据流,但它们无法逐个包检测,将好的或合法业务从恶意业务中分出,使得它们在事实上对IP地址欺骗攻击无效。
IDS入侵监测
IDS解决方案将不得不提供领先的行为或基于反常事务的算法来检测现在的DDoS攻击。但是一些基于反常事务的性能要求有专家进行手动的调整,而且经常误报,并且不能识别特定的攻击流。同时IDS本身也很容易成为DDoS攻击的牺牲者。
作为DDoS防御平台的IDS最大的缺点是它只能检测到攻击,但对于缓和攻击的影响却毫无作为。IDS解决方案也许能托付给路由器和防火墙的过滤器,但正如前面叙述的,这对于缓解DDoS攻击效率很低,即便是用类似于静态过滤串联部署的IDS也做不到。
DDoS攻击的手动响应
作为DDoS防御一部份的手动处理太微小并且太缓慢。受害者对DDoS攻击的典型第一反应是询问最近的上游连接提供者——ISP、宿主提供商或骨干网承载商——尝试识别该消息来源。对于地址欺骗的情况,尝试识别消息来源是一个长期和冗长的过程,需要许多提供商合作和追踪的过程。即使来源可被识别,但阻断它也意味同时阻断所有业务——好的和坏的。
1黑客也有可能通过暴力破解的方法来破解超级管理员密码,从而对服务器实行攻击。要预防超级管理员密码被暴力破解,购买到服务器后站长一定要修改超级管理员的默认密码,把密码修改成为一个复杂的英文加数字的组合密码,这样可以加大黑客破解密码的难度。再复杂的密码也有被破解的风险,所以建议超级管理员的密码定期修改一次。2端口是病毒、木马入侵的最主要途径,所有端口都有可能是黑客的利用对象,通过端口对服务器实行攻击。具体怎么攻击这里就不细说了,壹基比小喻这里主要讲一下怎么预防,想要预防黑客通过端口攻击服务器,最有效的方法是关闭不必要端口,修改重要端口。对外少开放一个端口,黑客就少一个入侵途径,每开放一个服务就意味着对外多开放一个端口,在关闭端口的同时也要关闭一些不必要的服务。此外,修改一些重要端口可以加大黑客的扫描难度,这样也能有效地保护我们的服务器。
3DDOS攻击是服务器常见的一种攻击,它的攻击方式有很多,最常见的是通过服务请求来占用服务资源,从而导致用户无法得到服务响应。预防DDOS攻击的最有效的方法是选择设有机房硬防的机房,硬件防火墙能够有效预防DDOS攻击和黑客攻击。硬防虽然能够有效预防DDOS攻击,但对CC攻击的基本无效,CC攻击需要通过软件防火墙来防御。
4漏洞也是黑客最主要的入侵途径,黑客可以通过系统漏洞、程序漏洞等对服务器实行攻击。每个系统、程序或多或少会存在有一些漏洞,或系统本身就存在的漏洞,或系统管理员配置错误导致的漏洞,站长朋友应该及时给服务器系统打新补丁,及时升级程序新版本。
以上是关于怎么预防服务器被攻击的分享,虽然服务器容易遭受攻击,但如果做好预防措施,能够最大限度的避免被攻击成本,而且学习了服务器被攻击恢复方法能够最快的解决问题,降低损失是放在首位的。现在网络发展快,另外除了上述的问题与方法,也还需要多留意新的事物,通过不断的更新补丁也能起到很好的预防。希望壹基比小喻的这些可以帮到你们。这种命题一百度,不要太多,太多,,,估计是要写论文吧,这种东西其实大家都一样,资源网上多的是,主要的是怎么抄的问题,抄和抄是不一样的,建议:
1,所要抄的东西不要范围太大,这样容易引起老师反感,老师会自卑的,他还没你水平高。。。
2,最好用小标题的形式,每个标题一个方面,清晰明了。。。
3,要是必须要用手写的话,千万记得字要写的好。。。
4,字数不要太多,当然也不能太少哦。。。
这些是自己上学时的一些小经验,见笑了,,,,当然需要修复,最好把机器的自动更新开着,这样有新的漏洞补丁就可以自动下载了.再有就有安装安全卫士360,里面也有漏洞修复工具.
下面介绍一下这方面的知识:
漏洞
漏洞是在硬件、软件、协议的具体实现或系统安全策略上存在的缺陷,从而可以使攻击者能够在未授权的情况下访问或破坏系统。具体举例来说,比如在Intel Pentium芯片中存在的逻辑错误,在Sendmail早期版本中的编程错误,在NFS协议中认证方式上的弱点,在Unix系统管理员设置匿名Ftp服务时配置不当的问题都可能被攻击者使用,威胁到系统的安全。因而这些都可以认为是系统中存在的安全漏洞。
漏洞与具体系统环境之间的关系及其时间相关特性
漏洞会影响到很大范围的软硬件设备,包括作系统本身及其支撑软件,网络客户和服务器软件,网络路由器和安全防火墙等。换而言之,在这些不同的软硬件设备中都可能存在不同的安全漏洞问题。在不同种类的软、硬件设备,同种设备的不同版本之间,由不同设备构成的不同系统之间,以及同种系统在不同的设置条件下,都会存在各自不同的安全漏洞问题。
漏洞问题是与时间紧密相关的。一个系统从发布的那一天起,随着用户的深入使用,系统中存在的漏洞会被不断暴露出来,这些早先被发现的漏洞也会不断被系统供应商发布的补丁软件修补,或在以后发布的新版系统中得以纠正。而在新版系统纠正了旧版本中具有漏洞的同时,也会引入一些新的漏洞和错误。因而随着时间的推移,旧的漏洞会不断消失,新的漏洞会不断出现。漏洞问题也会长期存在。
因而脱离具体的时间和具体的系统环境来讨论漏洞问题是毫无意义的。只能针对目标系统的作系统版本、其上运行的软件版本以及服务运行设置等实际环境来具体谈论其中可能存在的漏洞及其可行的解决办法。
同时应该看到,对漏洞问题的研究必须要跟踪当前最新的计算机系统及其安全问题的最新发展动态。这一点如同对计算机病毒发展问题的研究相似。如果在工作中不能保持对新技术的跟踪,就没有谈论系统安全漏洞问题的发言权,既使是以前所作的工作也会逐渐失去价值。
二、漏洞问题与不同安全级别计算机系统之间的关系
目前计算机系统安全的分级标准一般都是依据“橘皮书”中的定义。橘皮书正式名称是“受信任计算机系统评量基准”(Trusted Computer System Evaluation Criteria)。橘皮书中对可信任系统的定义是这样的:一个由完整的硬件及软件所组成的系统,在不违反访问权限的情况下,它能同时服务于不限定个数的用户,并处理从一般机密到最高机密等不同范围的信息。
橘皮书将一个计算机系统可接受的信任程度加以分级,凡符合某些安全条件、基准规则的系统即可归类为某种安全等级。橘皮书将计算机系统的安全性能由高而低划分为A、B、C、D四大等级。其中:
D级——最低保护(Minimal Protection),凡没有通过其他安全等级测试项目的系统即属于该级,如Dos,Windows个人计算机系统。
C级——自主访问控制(Discretionary Protection),该等级的安全特点在于系统的客体(如文件、目录)可由该系统主体(如系统管理员、用户、应用程序)自主定义访问权。例如:管理员可以决定系统中任意文件的权限。当前Unix、Linux、Windows NT等作系统都为此安全等级。
B级——强制访问控制(Mandatory Protection),该等级的安全特点在于由系统强制对客体进行安全保护,在该级安全系统中,每个系统客体(如文件、目录等资源)及主体(如系统管理员、用户、应用程序)都有自己的安全标签(Security Label),系统依据用户的安全等级赋予其对各个对象的访问权限。
A级——可验证访问控制(Verified Protection),而其特点在于该等级的系统拥有正式的分析及数学式方法可完全证明该系统的安全策略及安全规格的完整性与一致性。 '
可见,根据定义,系统的安全级别越高,理论上该系统也越安全。可以说,系统安全级别是一种理论上的安全保证机制。是指在正常情况下,在某个系统根据理论得以正确实现时,系统应该可以达到的安全程度。
系统安全漏洞是指可以用来对系统安全造成危害,系统本身具有的,或设置上存在的缺陷。总之,漏洞是系统在具体实现中的错误。比如在建立安全机制中规划考虑上的缺陷,作系统和其他软件编程中的错误,以及在使用该系统提供的安全机制时人为的配置错误等。
安全漏洞的出现,是因为人们在对安全机制理论的具体实现中发生了错误,是意外出现的非正常情况。而在一切由人类实现的系统中都会不同程度的存在实现和设置上的各种潜在错误。因而在所有系统中必定存在某些安全漏洞,无论这些漏洞是否已被发现,也无论该系统的理论安全级别如何。
所以可以认为,在一定程度上,安全漏洞问题是独立于作系统本身的理论安全级别而存在的。并不是说,系统所属的安全级别越高,该系统中存在的安全漏洞就越少。
可以这么理解,当系统中存在的某些漏洞被入侵者利用,使入侵者得以绕过系统中的一部分安全机制并获得对系统一定程度的访问权限后,在安全性较高的系统当中,入侵者如果希望进一步获得特权或对系统造成较大的破坏,必须要克服更大的障碍。
三、安全漏洞与系统攻击之间的关系
系统安全漏洞是在系统具体实现和具体使用中产生的错误,但并不是系统中存在的错误都是安全漏洞。只有能威胁到系统安全的错误才是漏洞。许多错误在通常情况下并不会对系统安全造成危害,只有被人在某些条件下故意使用时才会影响系统安全。
漏洞虽然可能最初就存在于系统当中,但一个漏洞并不是自己出现的,必须要有人发现。在实际使用中,用户会发现系统中存在错误,而入侵者会有意利用其中的某些错误并使其成为威胁系统安全的工具,这时人们会认识到这个错误是一个系统安全漏洞。系统供应商会尽快发布针对这个漏洞的补丁程序,纠正这个错误。这就是系统安全漏洞从被发现到被纠正的一般过程。
系统攻击者往往是安全漏洞的发现者和使用者,要对于一个系统进行攻击,如果不能发现和使用系统中存在的安全漏洞是不可能成功的。对于安全级别较高的系统尤其如此。
系统安全漏洞与系统攻击活动之间有紧密的关系。因而不该脱离系统攻击活动来谈论安全漏洞问题。了解常见的系统攻击方法,对于有针对性的理解系统漏洞问题,以及找到相应的补救方法是十分必要的。
四、常见攻击方法与攻击过程的简单描述
系统攻击是指某人非法使用或破坏某一信息系统中的资源,以及非授权使系统丧失部分或全部服务功能的行为。
通常可以把攻击活动大致分为远程攻击和内部攻击两种。现在随着互联网络的进步,其中的远程攻击技术得到很大发展,威胁也越来越大,而其中涉及的系统漏洞以及相关的知识也较多,因此有重要的研究价值。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)