一、分布式计算技术的形成
CORBA (Common Object Request Broker Architecture) 是在1992年由OMG(Open Management Group) 组织提出的。那时的分布式应用环境都采用Client/Server架构,CORBA的应用很大程度的提高了分布式应用软件的开发效率。
当时的另一种分布式系统开发工具是Microsoft的DCOM(Distributed Common Object Model)。Microsoft为了使在Windows平台上开发的各种应用软件产品的功能能够在运行时(Runtime)相互调用(比如在Microsoft Word中直接编辑Excel文件),实现了OLE(Linked and Embedded Object)技术,后来这个技术衍生为COM(Common Object Model)。
随着Internet的普及和网络服务(Web Services)的广泛应用, Browser/Server架构的模式逐渐体现出它的优势。 于是,Sun公司在其Java技术的基础上推出了应用于B/S架构的J2EE的开发和应用平台;Microsoft也在其DCOM技术的基础上推出了主要面向B/S应用的NET开发和应用平台。
二、使用的协议
NET中涵盖的DCOM技术和CORBA一样,在网络传输层都采用TCP/IP协议;也都有自己的IDL规范。所不同的是,在TCP/IP之上,CORBA采用GIOP/IIOP协议,所有CORBA服务器以IIOP通信,形成了ORB软件通道;J2EE的RMI曾经采用独立的通信协议,目前已经改为RMI/IIOP,体现了J2EE的开放性;DCOM也有自己的通信协议(TCP在135端口的服务),但微软没有公开这个协议的规范;同样,CORBA的IDL采用类C++的定义,是公开的规范;DCOM的IDL的文件虽然是文本形式的,微软没有正式公布它的规范,在使用中,NET的IDL是由开发工具生成的。
三、应用的环境
关于NET,比尔盖茨这样说:“简单地说,NET是以微软的各种产品为开发工具和应用平台, 实现基于XML的网络服务。”由此也可以看出,NET在Microsoft的世界里功能强大,但对于Unix和Linux这些在服务器市场占主要份额的系统,NET显得束手无策。
因此,J2EE显示了它跨平台的优势,为网络服务商提供了很好的面向前端(front-end)的开发和应用平台, 随着网络服务进一步广泛应用和服务集成度的提高, 在网络服务提供商的后台会形成越来越庞大的分布式计算环境, CORBA模块结构更适合后台(back-end)的多种服务, 例如网络服务的计费程序等 因此可以看出, J2EE和CORBA技术在网络服务(Web Services)这片蓝天下, 各自有自己的海洋和陆地。如果在前端(front-end)使用了NET开发平台,那么在后端(back-end)的分布式结构中,DCOM就是理想的选择。
J2EE是纯Java技术,很多测试显示RMI(Java)服务器的响应速度远远低于非Java的CORBA服务器。因此,在一些对数据处理速度和响应时间要求较高的系统开发中,要对RMI和CORBA的性能进行测试对比后再做选择。
四、应用软件的开发和维护
从应用软件的开发过程的角度看, J2EE是完全开放式的平台, 体现为既面向设计人员, 也面向开发人员的规范; CORBA也是一种规范, 但更多体现为中间产品, CORBA产品的提供商才是这种规范的真正执行者, 对应用开发的程序员而言, 只要了解IDL语言的规范, 不必详细知道ORB/GIOP/IIOP的协议细节。NET作为Microsoft在网络环境的主打, 体现为一系列产品化的开发工具, 比如C#, C++, 等。这些开发工具是直接针对应用开发人员的。其实Sun公司提供的J2EE也是由许多软件包(应用API)来面对开发人员的。
从软件开发成本与周期以及软件的维护角度看,J2EE比CORBA有以上优势。
五、应用前景
对于分布式计算技术的架构,不能绝对地说哪一个更好,只能说哪一个更合适。针对不同的软件项目需求,具体分析才是明智的选择。
从宏观市场看,CORBA产品的销售并没有想象那样给CORBA产品提供商带来可观的利润;而J2EE的呼声也高于NET; 随着J2EE中RMI/IIOP与CORBA接口的完善,再加上开发费用的考虑和使用的方便性,J2EE一揽子开放的环境会是人们首先考虑的选择;但CORBA标准的强壮的兼容性,也使这种技术在大型系统开发中会占有一席之地。
关于作者
周斌 北京时力永联科技公司业务咨询和软件外包服务部经理,曾执教于复旦大学计算机科学系, 1994年赴美国Oracle总部参加合作项目, 后就读于加拿大哥伦比亚大学
分布式是一门计算机科学,而分布式服务器就是将数据、程序等不同类型的数据分布在不同的服务器。
一般情况下,使用分布式架构搭建一个网站至少需要一台服务器存放数据库,一台服务器存放网站程序。
景安河南最大的多线服务器托管商!提供专业的双机热备、负载均衡等增值服务
大型分布式架构都是靠多种语言和工具共同分工合作实现的
不是一两种工具或者语言能实现的如果专指php那是没有意义的
因为php本身只是一个单进程的东东,更别说分布式了
大规模的web应用以及分布式架构主要在于服务器的整体架构
1、web服务集群
2、数据库集群
3、分布式缓存
php充其量只是实现其中一个节点的某个具体的web应用
1 大型网站系统的特点
2 大型网站架构演化历程
21 初始阶段架构
问题:网站运营初期,访问用户少,一台服务器绰绰有余。
特征:应用程序、数据库、文件等所有的资源都在一台服务器上。
描述:通常服务器 *** 作系统使用 linux,应用程序使用 PHP 开发,然后部署在 Apache 上,数据库使用 Mysql,通俗称为 LAMP。汇集各种免费开源软件以及一台廉价服务器就可以开始系统的发展之路了。
22 应用服务和数据服务分离
问题:越来越多的用户访问导致性能越来越差,越来越多的数据导致存储空间不足,一台服务器已不足以支撑。
特征:应用服务器、数据库服务器、文件服务器分别独立部署。
描述:三台服务器对性能要求各不相同:应用服务器要处理大量业务逻辑,因此需要更快更强大的 CPU;数据库服务器需要快速磁盘检索和数据缓存,因此需要更快的硬盘和更大的内存;文件服务器需要存储大量文件,因此需要更大容量的硬盘。
23 使用缓存改善性能
问题:随着用户逐渐增多,数据库压力太大导致访问延迟。
特征:由于网站访问和财富分配一样遵循二八定律:80% 的业务访问集中在 20% 的数据上。将数据库中访问较集中的少部分数据缓存在内存中,可以减少数据库的访问次数,降低数据库的访问压力。
描述:缓存分为两种:应用服务器上的本地缓存和分布式缓存服务器上的远程缓存,本地缓存访问速度更快,但缓存数据量有限,同时存在与应用程序争用内存的情况。分布式缓存可以采用集群方式,理论上可以做到不受内存容量限制的缓存服务。
24 使用应用服务器集群
问题:使用缓存后,数据库访问压力得到有效缓解。但是单一应用服务器能够处理的请求连接有限,在访问高峰期,成为瓶颈。
特征:多台服务器通过负载均衡同时向外部提供服务,解决单一服务器处理能力和存储空间不足的问题。
描述:使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,提升系统的并发处理能力,使得服务器的负载压力不再成为整个系统的瓶颈。
25 数据库读写分离
问题:网站使用缓存后,使绝大部分数据读 *** 作访问都可以不通过数据库就能完成,但是仍有一部分读 *** 作和全部的写 *** 作需要访问数据库,在网站的用户达到一定规模后,数据库因为负载压力过高而成为网站的瓶颈。
特征:目前大部分的主流数据库都提供主从热备功能,通过配置两台数据库主从关系,可以将一台数据库服务器的数据更新同步到一台服务器上。网站利用数据库的主从热备功能,实现数据库读写分离,从而改善数据库负载压力。
描述:应用服务器在写 *** 作的时候,访问主数据库,主数据库通过主从复制机制将数据更新同步到从数据库。这样当应用服务器在读 *** 作的时候,访问从数据库获得数据。为了便于应用程序访问读写分离后的数据库,通常在应用服务器端使用专门的数据访问模块,使数据库读写分离的对应用透明。
26 反向代理和 CDN 加速
问题:中国网络环境复杂,不同地区的用户访问网站时,速度差别也极大。
特征:采用 CDN 和反向代理加快系统的静态资源访问速度。
描述:CDN 和反向代理的基本原理都是缓存,区别在于 CDN 部署在网络提供商的机房,使用户在请求网站服务时,可以从距离自己最近的网络提供商机房获取数据;而反向代理则部署在网站的中心机房,当用户请求到达中心机房后,首先访问的服务器时反向代理服务器,如果反向代理服务器中缓存着用户请求的资源,就将其直接返回给用户。
27 分布式文件系统和分布式数据库
问题:随着大型网站业务持续增长,数据库经过读写分离,从一台服务器拆分为两台服务器,依然不能满足需求。
特征:数据库采用分布式数据库,文件系统采用分布式文件系统。
描述:分布式数据库是数据库拆分的最后方法,只有在单表数据规模非常庞大的时候才使用。不到不得已时,更常用的数据库拆分手段是业务分库,将不同的业务数据库部署在不同的物理服务器上。
28 使用 NoSQL 和搜索引擎
问题:随着网站业务越来越复杂,对数据存储和检索的需求也越来越复杂。
特征:系统引入 NoSQL 数据库及搜索引擎。
描述:NoSQL 数据库及搜索引擎对可伸缩的分布式特性具有更好的支持。应用服务器通过统一数据访问模块访问各种数据,减轻应用程序管理诸多数据源的麻烦。
29 业务拆分
问题:大型网站的业务场景日益复杂,分为多个产品线。
特征:采用分而治之的手段将整个网站业务分成不同的产品线。系统上按照业务进行拆分改造,应用服务器按照业务区分进行分别部署。
描述:应用之间可以通过超链接建立关系,也可以通过消息队列进行数据分发,当然更多的还是通过访问同一个数据存储系统来构成一个关联的完整系统。
纵向拆分:将一个大应用拆分为多个小应用,如果新业务较为独立,那么就直接将其设计部署为一个独立的 Web 应用系统。纵向拆分相对较为简单,通过梳理业务,将较少相关的业务剥离即可。
横向拆分:将复用的业务拆分出来,独立部署为分布式服务,新增业务只需要调用这些分布式服务横向拆分需要识别可复用的业务,设计服务接口,规范服务依赖关系。
210 分布式服务
问题:随着业务越拆越小,存储系统越来越庞大,应用系统整体复杂程度呈指数级上升,部署维护越来越困难。由于所有应用要和所有数据库系统连接,最终导致数据库连接资源不足,拒绝服务。
特征:公共业务提取出来,独立部署。由这些可复用的业务连接数据库,通过分布式服务提供共用业务服务。
3 大型网站架构模式
31 分层
大型网站架构中常采用分层结构,将软件系统分为应用层、服务层、数据层:
分层架构的约束:禁止跨层次的调用(应用层直接调用数据层)及逆向调用(数据层调用服务层,或者服务层调用应用层)。
分层结构内部还可以继续分层,如应用可以再细分为视图层和业务逻辑层;服务层也可以细分为数据接口层和逻辑处理层。
32 分割
将不同的功能和服务分割开来,包装成高内聚低耦合的模块单元。这有助于软件的开发和维护,便于不同模块的分布式部署,提高网站的并发处理能力和功能扩展能力。
33 分布式
大于大型网站,分层和分割的一个主要目的是为了切分后的模块便于分布式部署,即将不同模块部署在不同的服务器上,通过远程调用协同工作。
分布式意味可以用更多的机器工作,那么 CPU、内存、存储资源也就更丰富,能够处理的并发访问和数据量就越大,进而能够为更多的用户提供服务。
分布式也引入了一些问题:
常用的分布式方案:
34 集群
集群即多台服务器部署相同应用构成一个集群,通过负载均衡设备共同对外提供服务。
集群需要具备伸缩性和故障转移机制:伸缩性是指可以根据用户访问量向集群添加或减少机器;故障转移是指,当某台机器出现故障时,负载均衡设备或失效转移机制将请求转发到集群中的其他机器上,从而不影响用户使用。
35 缓存
缓存就是将数据存放在距离最近的位置以加快处理速度。缓存是改善软件性能的第一手段。
网站应用中,缓存除了可以加快数据访问速度以外,还可以减轻后端应用和数据存储的负载压力。
常见缓存手段:
使用缓存有两个前提:
36 异步
软件发展的一个重要目标和驱动力是降低软件耦合性。事物之间直接关系越少,彼此影响就越小,也就更容易独立发展。
大型网站架构中,系统解耦的手段除了分层、分割、分布式等,还有一个重要手段——异步。
业务间的消息传递不是同步调用,而是将一个业务 *** 作拆分成多阶段,每个阶段间通过共享数据的方式异步执行进行协作。
异步架构是典型的生产者消费模式,二者不存在直接调用。异步消息队列还有如下特性:
37 冗余
大型网站,出现服务器宕机是必然事件。要保证部分服务器宕机的情况下网站依然可以继续服务,不丢失数据,就需要一定程度的服务器冗余运行,数据冗余备份。这样当某台服务器宕机是,可以将其上的服务和数据访问转移到其他机器上。
访问和负载很小的服务也必须部署 至少两台服务器构成一个集群,目的就是通过冗余实现服务高可用。数据除了定期备份,存档保存,实现 冷备份 外;为了保证在线业务高可用,还需要对数据库进行主从分离,实时同步实现 热备份。
为了抵御地震、海啸等不可抗因素导致的网站完全瘫痪,某些大型网站会对整个数据中心进行备份,全球范围内部署 灾备数据中心。网站程序和数据实时同步到多个灾备数据中心。
38 自动化
大型网站架构的自动化架构设计主要集中在发布运维方面:
39 安全
4 大型网站核心架构要素
架构 的一种通俗说法是:最高层次的规划,难以改变的决定。
41 性能
性能问题无处不在,所以网站性能优化手段也十分繁多:
42 可用性
可用性指部分服务器出现故障时,还能否对用户提供服务
43 伸缩性
衡量伸缩的标准就是是否可以用多台服务器构建集群,是否容易向集群中增删服务器节点。增删服务器节点后是否可以提供和之前无差别的服务。集群中可容纳的总服务器数是否有限制。
44 扩展性
衡量扩展性的标准就是增加新的业务产品时,是否可以实现对现有产品透明无影响,不需要任何改动或很少改动,既有功能就可以上线新产品。主要手段有:事件驱动架构和分布式服务。
45 安全性
安全性保护网站不受恶意攻击,保护网站重要数据不被窃取。
欢迎工作一到五年的Java工程师朋友们加入Java程序员开发: 721575865
群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!
百度词条里的解释是:负载均衡,英文叫Load Balance,意思就是将请求或者数据分摊到多个 *** 作单元上进行执行,共同完成工作任务。
它的目的就通过调度集群,达到最佳化资源使用,最大化吞吐率,最小化响应时间,避免单点过载的问题。
负载均衡可以根据网络协议的层数进行分类,我们这里以ISO模型为准,从下到上分为:
物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。
当客户端发起请求,会经过层层的封装,发给服务器,服务器收到请求后经过层层的解析,获取到对应的内容。
二层负债均衡是基于数据链路层的负债均衡,即让负债均衡服务器和业务服务器绑定同一个虚拟IP(即VIP),客户端直接通过这个VIP进行请求,那么如何区分相同IP下的不同机器呢?没错,通过MAC物理地址,每台机器的MAC物理地址都不一样,当负载均衡服务器接收到请求之后,通过改写>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)