1、创建colab文件:进入Google云盘后,创建一个colab文件。第一次使用,会存在colab选项不显示的情况,点击关联更多应用即可。点击colab选项后会跳转到一个页面,与jupyter基本一模一样,可输入代码段,能连接服务器,有文件目录、colab文件名和使用选项。
2、配置colab环境:点击修改后点击笔记本设置就可以配置gpu了,硬件加速选择gpu,点击连接即配置好环境,将Googledrive的云空间连接起来,就有了drive文件夹,现在配置已经全部完成。
3、配置完成就可以使用Googlecolab跑深度学习模型了,gpu是k80计算速度慢,可以再新建一个colab文件,两三次就可以开到p100了。gpu用完的场景,需要1天时间恢复,可以再弄一个谷歌账号重复上述 *** 作。如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。
主要任务:承担深度学习的数据建模计算、运行复杂算法。
蓝海大脑的液冷GPU服务器挺好的,具有高性能,高密度、扩展性强等特点。液冷GPU服务器产品支持1~20块 GPU卡,还可以选择,毕竟能可以选择也是很好的,芯片主要采用龙芯、飞腾、申威、海光、英伟达、Intel、AMD。完全定制啊,敲开心。适用于深度学习训练及推理、生命科学、医药研发、虚拟仿真等场景,覆盖服务器、静音工作站、数据中心等多种产品形态,量身定制,满足客户全场景需求。技术人员给的建议都非常受用。深度学习是作为机器学习的一个算法而存在,被称为人工神经网络,由于受到算法理论、数据、硬件的制约,多年以来一直都是单层或浅层的网络结构。随着大数据的发展,以及大规模硬件加速设备的出现,特别是GPU的不断提升,使得神经网络重新受到重视。深度学习的发展需要大数据跟计算力的支撑,蓝海大脑专注于人工智能领域,适用于GPU高性能计算、深度学习训练及推理等场景,覆盖服务器、静音工作站等多种产品形态,能够满足客户全场景需求,80%做人工智能科研等领域研究的重点高校已应用蓝海大脑的产品。
深度学习服务器/工作站,不能单独考虑硬件配置高低,以及预算多少,要根据使用者的类型,配置合理的硬件,硬件配置至少分为两个类型:
一、深度学习开发工作站/服务器
基本要求:
1)处理器:8核或以上
2)内存:64G内存或以上
3)GPU:1-4块GTX1080Ti,GTX Titan XP/V,Quadro GP100
4)系统硬盘:选用高速的SSD固态硬盘
二、深度学习训练工作站/服务器
基本要求:
1)处理器:8核或以上
2)内存:128G内存以上
3)GPU:4-10块Tesla系列GPU(K40,K80,P100,V100)
4)系统硬盘:选用高速的SSD固态硬盘组阵列(工作站:要求噪音小,适合办公室使用,服务器:要求密度高,噪音大,一般适用于机房)
需要安装。1。安装系统。1。安装ubuntu。具体安装省略,记录一个小bug,可能在给有独立显卡的台式机安装ubuntu双系统时遇到:在安装时,使用U盘启动这步,直接选择tryubuntu或installubuntu都会出现黑屏的问题。解决方法:将光标移动到installubuntu一项上,按e键,会进入一个可编辑的界面,将quietsplash修改为nouveau。modeset=0nomodeset,然后按ctrl+x进入安装。之后在ubuntu安装nvidia驱动后,就正常了。如果没有安装驱动,每次进入前,都要用同样的方法将上面的quietsplash修改。2。配置nvidia显卡。具体分为两步:安装nvidia驱动,如果是图形界面的话,在Software&Updates中的AdditionalDrivers中选择合适的驱动安装即可。在官网下载cudnn并安装。2。创建和登录用户。在linux上创建自己的用户,方便管理代码和安装应用。比如我们想要创建一个用户名是haha,密码是123456的用户,命令如下:添加用户:useradd-d/home/haha-mhaha。设置密码(只有设置密码之后,才能登录用户):passwdhaha,然后输入密码。然后就可以通过sshhaha@your_ip的方式登录服务器了。登录后也可以设置bash:chsh-s/bin/bash或修改为zsh。加入root权限:使用apt下载时,如果出现不在sudoers文件中的报错,则需要将用户加入sudoers,执行sudovim/etc/sudoers命令,rootALL=(ALL)ALL的下一行加入hahaALL=(ALL)ALL,然后保存。删除用户:userdel-rhaha。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)