GPU发展和现状是什么样的?

GPU发展和现状是什么样的?,第1张

全球GPU芯片行业发展历程

在1984年之前,GPU原本只是用于图形和图像的相关运算,受CPU的调配,但随着云计算、AI等技术的发展,GPU并行计算的优势被发掘,在高性能计算领域逐渐取代CPU成为主角。1999年,NVIDIA公司在发布其标志性产品GeForce256时,首次提出了GPU的概念。2006年,NVIDIA发布了第一款采用统一渲染架构的桌面GPU和CUDA通用计算平台,使开发者能够使用NVIDIAGPU的运算能力进行并行计算,拓展了GPU的应用领域。2011年,NVIDIA发布TESLAGPU计算卡,正式将用于计算的GPU产品线独立出来,标志着GPU芯片正式进入高性能计算时代。

全球GPU芯片出货量超过46亿片/年

近些年,全球GPU技术快速发展,已经大大超出了其传统功能的范畴,除了满足目前大多数图形应用需求,在科学计算、人工智能及新型的图形渲染技术方面的技术应用日益成熟,进而推动全球GPU芯片市场的持续高速发展。

从全球GPU芯片出货量来看,根据全球知名调研机构JPR数据,从2021年各个季度来看,全球GPU芯片的季度出货量维持在1-13万片之间,2021年全年出货总量超过46亿片。

全球集成GPU芯片出货量占比超八成

GPU芯片主要可分为独立GPU(封装在独立的显卡电路板上,使用专用的显示存储器,一般来讲,其性能更高)和集成GPU(集成GPU常和CPU共用一个Die,共享系统内存)。

目前,全球集成GPU出货量占比超过八成,占据绝大部分市场份额;但从占比变化趋势来看,独立GPU的市场份额有所增长,反映出市场对高性能GPU芯片需求有所增长。

注:内环2020年q4,外环2021年q4数据。

预计2027年全球市场规模超过320亿美元

根据IC Insights数据,2015-2021年全球GPU芯片市场规模增速超过20%,2021年,全球GPU芯片市场规模超过220亿美元。

根据JPR资料,预计2022-2026年,全球GUP出货量将实现63%复合年增长,以此增长率测算2027年全球GPU芯片行业市场规模将超过320亿美元。

—— 更多本行业研究分析详见前瞻产业研究院《中国GPU芯片行业市场前瞻与投资战略规划分析报告》

GPU服务器,简单来说,GPU服务器是基于GPU的应用于视频编解码、深度学习、科学计算等多种场景的快速、稳定、d性的计算服务,我们提供和标准云服务器一致的管理方式。出色的图形处理能力和高性能计算能力提供极致计算性能,有效解放计算压力,提升产品的计算处理效率与竞争力。
下面几个场景我们可以使用CPU服务器,如果办公场景需要建议大家配置GPU服务器,如果场景无关,使用普通的服务器也无妨。在下会根据大家的使用场景给到大家相匹配的服务器类型和配置!
一、简单深度学习模型
使用GPU服务器为机器学习提供训练或者预测,腾讯GPU云服务器带有强大的计算能力,可作为深度学习训练的平台,
可直接与外界连接通信。可以使用GPU服务器作为简单深度学习训练系统,帮助完成基本的深度学习模型
二、复杂深度学习模型,腾讯云GPU服务器具有强大的计算能力,可以将
GPU服务器作为深度学习训练的平台。结合云服务器 CVM提供的计算服务、对象存储
COS提供的云存储服务、云数据库MySQL提供的在线数据库服务、云监控和大禹提供的安全监控服务,、视频编解码,可以采用GPU服务器进行渲染,利用 GPU 加速指令,让数以千计的核心为您所用,加快图形图像编码渲染速度。
这些是一些可以用到GPU服务器的场景,所以如果您的使用需要比较高端,建议还是使用GPU服务器。

GPU服务器的主要应用场景有海量计算处理,超强的计算功能可应用与海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等,可能原本需要几天才能完成的数据量,用GPU服务器在几个小时就完成了;GPU服务器还可以作为深度学习训练平台,可直接加速计算服务,亦可直接与外界连接通信等等。思腾合力在GPU服务器的型号方面还是有很多选择的,有自主研发的品牌也有英伟达的,在选择方面还是比较多的,应用的场景也十分广泛。

推荐品牌: LINKZOL(联众集群),可咨询:1381O114665
推荐配置一:
计算平台采用:LZ743GR-2G/Q
系统:Ubuntu 14043 x64
CPU:Intel Xeon十核E5-2630v4(22GHz,80 GT/s)
内存:原厂64GB内存 (16GB×4) DDR4 2133MHZ ECC-REG(带内存校错技术,最大支持2T)
系统硬盘:INTEL 25寸240G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD)
系统硬盘:希捷35寸4T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;)
GPU卡:2块NVIDIA TATAN-X GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大2个GPU卡)
电源:1200W High efficiency (96%)金牌电源
推荐配置二:
计算平台采用:LZ-748GT
系统:Ubuntu 14043 x64
CPU:Intel Xeon十二核E5-2650v4(22GHz,96 GT/s)
内存:原厂256GB内存 (16GB×16) DDR4 2133MHZ ECC-REG(带内存校错技术,最大支持2T)
系统硬盘:2块INTEL 25寸480G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD)
系统硬盘:3块希捷35寸4T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;)
GPU卡:4块TESLA TITANX GPU计算卡或者4块tesla P4O GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大4个GPU卡)
电源:2000W High efficiency (94%)冗余钛金电源
推荐配置三:
计算平台采用:LZ428GR-8G/Q
系统:Ubuntu 14043 x64
CPU:Intel Xeon十四核E5-2690v4(26GHz,96GT/s)
内存:原厂256GB内存 (16GB×16) DDR4 2133MHZ ECC-REG(带内存校错技术,最大支持2T)
系统硬盘:2块INTEL 25寸480G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD)
系统硬盘:3块希捷25寸2T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;)
GPU卡:8块TESLA P40 GPU计算卡或者8块NVIDIA TATAN-X GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大8个GPU卡)
电源:1600W(2+2) High efficiency (96%)钛金电源


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13109812.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存