x86的意思指的是32位系统,它是由Intel推出的一种复杂指令集,用于控制芯片的运行的程序,现在X86已经广泛运用到了家用PC领域。
X86可以称作为32bit,其中的bit代表32位版本的系统,同时X86系统最大只能识别到内存是3、75G。而X64就是通常所说的64bit,是指64位的 *** 作系统,64位系统最大支持内存总数高达128G,对于内存非常大的服务器基本都是装的64位系统,64位可以很好的利用大内存,如果大内存装32位那是对内存的一种浪费。大型机、小型机、x86服务器的区别
首先来讲x86服务器,与平常人们所接触的台式机笔记本类似,采用cisc架构处理器。随着英特尔至强处理器的性能不断提升,业内有种说法是x86服务器有抢占小型机市场的趋势。
x86服务器
x86服务器
intel推出至强7500系列处理器(例如nehalem-ex),将至强平台的可靠性、可用性和可维护性(ras)带到新的高度,此外将原本只为risc架构专属的诸如机器校验架构(machine
check
architecture,mca)等特性的移植,也使至强7500平台在面向高端关键性业务应用时底气更足。至强7500的推出,是intel志在关键应用市场一展身手的重要一步。
虽然近年来x86服务器的出货量占整个服务器(包含x86服务器、小型机、大型机)领域的80%左右,但是其市场份额却只有50%。这主要是因为在重要的关键业务应用上,小型机向来都是首选。
小型机
小型机
小型机,一种介于pc服务器和大型机之间的高性能计算机,一般认为,传统小型机是指采用risc、mips等专用处理器,主要支持unix *** 作系统的封闭、专用的计算机系统,所以又称risc服务器或unix服务器。
z196
cpu架构
ibm大型机z196
芯片架构
大型机,又名大型主机,使用专用的处理器指令集、 *** 作系统和应用软件。故此,大型机不仅仅是一个硬件上的概念,更是一个硬件和专属软件的有机整体。大型机是上世纪六十年代发展起来的计算机系统。经过四十年的不断更新,其稳定性和安全性在所有计算机系统中是首屈一指的。
大型机
大型机
大型机与小型机的区别并不是很明显,他们与x86服务的区别主要是在于ras、i/o吞吐量以及isa。相比x86,IBM的Power架构和Sun的SPARC架构都曾有着很明显的性能优势。但时至今日,已经接近40岁的x86架构占据了超过90%的服务器市场。根源来看,是由于封闭系统和企业属性不符,盲目的追求生态会让推第三方到竞争对手的怀抱。这也是更开放的x86架构如今枝繁叶茂的原因。
Power高处不胜寒
1980年,IBM创新的推出了全球第一台基于RISC(精简指令集)架构的原型机,RISC对于CISC(复杂指令集)在高性能领域优势明显。而1994年,IBM基于此推出PowerPC604处理器,其强大的性能在当时处于全球领先地位。
在高端领域,Power架构具备大规模SMP系统性能,其可以保障内存在访问任意一枚CPU时速度是一致的。而x86则是采用了NUMA结构,CPU和内存分区,这就意味着在访问自己部分的内存速度飞快,而其他部分内存速度要慢不少。也正是因此,4路以上的x86服务器相对较少。
硬件方面,Power系统在可靠性、可用性和可维护性的方面的出色表现使得 IBM从芯片到系统所设计的整机方案有着独有的优势。Power架构的处理器在超算、大型企业的UNIX服务器等多个方面应用也十分成功。
IBM的Power架构 强大却不亲民
在软件方面,其专用的AIX系统在稳定性、软件方案集成度和厂商技术支持能力方面都要更强。由于用户选一平台主要看软件需求,一般对数据保护和724小时不宕机等有所要求,power架构的稳定性和运维等方面相对更优。
但是,Power系列的问题也十分明显,那就是价格太不亲民,技术也赶不上环境的变化。
在云计算兴起后,随着分布式系统逐渐成熟,系统对小型机的依赖开始降低,改为依靠集群提供,性能也可实现分布式处理。而更为关键的是,IBM的全套服务尽管稳定性优秀,但却影响了Power架构对其他商家的吸引力。
Sparc:流水无情恋落花
除了Power外另一个在Unix系统中表现极为活跃的架构就是SPARC(Scalable Processor ARChitecture,可扩展处理器架构)。同样在是上世纪80年代,Sun公司首先提出了RISC处理器体系架构SPARC。并且在1989年,Sun将采用了该架构的SPARC处理器应用于高性能工作站及服务器上。该架构的开放性和risc体系的特点很快让其成为了国际流行的架构。
SPARC有意 市场无情
为了扩大SPARC的影响力并作出进一步优化,1989年“SPARC International”组织成立,帮助进行SPARC架构标准管理,而该组织的会员包括了很多全球知名的公司和机构,比如如欧空局、欧比特、摩托罗拉、东芝、富士通、Aeroflex Gaisler等,以及2009年收购了Sun的Oracle。
SPARC架构的成功和Sun旗下的Solaris系统有着分不开的关系。当计算机系统庞大、用户数量巨大增加时,基于Unix *** 作系统打造的 Solaris能更好地利用计算机资源,是所有商业版中最可靠最完善的版本。而依赖SPARC架构和Solaris系统的性能和可靠性,其占领了服务器高端市场。Sun的另一个更为知名的产品是Java,虽然在上世纪90年代为智能家电开发的Java并没有为其带来相应的回报,但已成为今天移动时代最重要的开发语言。
如此强大的实力本应统领服务器市场,但遗憾的是,在微软和英特尔组成Wintel联盟之后,两者凭借自身在各自市场的规模效应,使得采用Wintel产品的服务器厂商可以通过低廉的价格大肆抢占中低端市场。而当Sun醒悟过来,通过开源等方式想要挽回败局时为时已晚。
Solaris系统已经被Oracle裁撤
最终,市值曾超2000亿美元的Sun以74亿美元卖给了Oracle。表面上看,Oracle的各种软件和SPARC架构的完美兼容大可以让这一架构起死回生。可是事实并不尽如人意,Oracle在2010年放弃了开源项目OpenSolaris;去年年底,Oracle宣布Solaris *** 作系统将被裁撤,SPARC架构最大的优势仅剩下和Oracle软件的兼容性。
而且Sun旗下产品线众多,SPARC架构仅仅依靠Oracle根本无法走远,而能够不计竞争关系合作研发的企业少之又少,SPARC架构如今的局面就变得十分尴尬。
x86依靠生态称霸市场
与Power和SPARC在高性能领域的风生水起不同,x86架构是天生的小屌丝。1978年他出生的那年,英特尔还只是一个普通的科技公司。可是x86架构随同其cisc指令集却开启了一个新的时代。
x86架构在服务器领域本无优势
尽管在最初的几年,x86并没有引发太大的震动,但是三年后,x86架构得到IBM PC的应用,并很快成为了全球个人计算机的标准平台,成为史上最成功的CPU架构,Intel如今的地位很大程度上是借助x86架构帮助。
很快,x86架构处理器从桌面到笔记本、服务器、超级计算机和编写设备等多种平台得到发展,苹果在这期间就放弃了PowerPC专为使用x86架构。但是,X86 CPU采用的cisc指令集却有着自己的问题。
CISC指令集的固有问题在于CPU执行大多数是在访问存储器中的数据,这拖慢了整个系统的速度。而RISC系统则往往具有很多个通用寄存器,采用重叠寄存器窗口和寄存器堆等技术让寄存器资源充分利用。X86架构计算机利用效率低,执行速度慢的缺点在高性能领域暴露无遗。
再者,CISC指令采用顺序串行执行,每条指令中的 *** 作也是按照顺序串行执行,其优点在于控制简单。问题在于如果遇到复杂的指令,那么整体运行速度较慢而且过程复杂。
CISC与RISC指令集对比
今天的x86 CPU中已融入了解码的功能,其将长度不定的x86指令转换为长度固定的类似于RISC指令,然后将其交给RISC内核进行处理。解码包括了硬件解码和微解码两种,简单的x86指令采用硬件解码速度较快,而复杂的指令则需要微解码,将其分成若干条简单指令后才进行执行。目前,x86架构的最大优势在于单条指令功能强大,指令数少速度较快;而由于指令数少,高频率运行时也不需要很大的宽带占用往CPU传输指令。
x86的成功是因为英特尔不做服务器
x86之所以可以赢得市场主要原因在于其是一个十分开放的架构。IBM和SUN当年都是从芯片到服务器到系统一手包办的公司。而英特尔则是一个十分纯粹的芯片厂商,其业务仅与AMD等少数芯片生产者存在竞争,这就使得服务器厂商不用忌惮与之发生竞争关系。
SOC不弱 只怪三星太强
就像今天的手机市场,尽管三星也有很强的芯片设计制造能力,但是除了魅族以外,没有一家手机商使用三星的SOC。英特尔与全球大多数的设备生产商的合作在保证了英特尔出货批量的同时,将良品率提升并降低成本从而进一步推高了x86架构在市场的占有率。
x86的成功是因为英特尔不做服务器
单从性能来看,无论Power还是SPARC架构都可以击溃x86,可是最终能够赢下来的却偏偏是"最弱"的x86架构。这并非劣币淘汰良币,而是市场竞争的选择,根源上讲,x86的成功在于英特尔根本不碰服务器。
IBM很强,这一点在英特尔还只是个普通小公司的时候就已经是事实了。可是强大的IBM大包大揽,无论大型机、小型机、芯片还是系统全都亲自上阵,这样做在安全和稳定性方面确实有自己的优势,而在金融领域也确实让大型机受益匪浅,可这么做无异于断了自己单个产品的生路。试问,小型机领域除了IBM有哪家服务器生产厂商愿意用Power架构芯片呢?那不就是相当于给竞争对手IBM的小型机送钱吗?
英特尔的成功在于知道什么不该碰
而研发了SPARC架构的Sun也是犯了这个错误,Sun在最辉煌的时候不仅有SPARC和java,服务器、工作站、个人计算机等多种设备至今依然占据部分市场。可是SPARC架构想要发展必须依托于设备生产商的认可,可谁会买竞争对手的账呢?
克己复礼,天下归仁
而英特尔的战术就非常的明确,专精于x86架构芯片,绝不碰设备生产。因此不论设备生产商、软件开发者或者系统开发者都可以与不存在利益竞争关系的英特尔合作。受益于此,x86架构的兼容性也越发强大,生态体系越发完善,这才成就了现如今市场占有率超过90%的一家独大局面,英特尔也借助x86架构一跃成为全球顶级的芯片提供商。
谷歌吃下了摩托罗拉 却赔的血本无归
其他领域,正面典型如高通,专注芯片研发甚至连生产厂都不建,依靠专利和技术就成为顶级科技企业;反面如一心想推安卓的谷歌,125亿美元收购摩托罗拉,三年后以29亿美元卖给联想;微软50亿美元收购诺基亚欲在移动端推广Windows系统,可如今无奈诺基亚改投安卓旗下。
克己复礼,天下归仁,孔子的话用在现如今的市场之中依然适用。Power和SPARC架构在战略上就已经决定了其必然会成为小众化的产物,而英特尔的x86架构战略则无比清晰,毕竟自己的产品永远不可能让竞争对手买单。
毫无疑问,在整个IT技术发展过程中,英特尔扮演了举足轻重的地位。英特尔至强产品线一直以来都是那些高需求服务器和工作站的最佳选择。
为什么至强服务器和其CPU一直处于霸主地位呢, 了解一下其一些功能你就会明白,这还可以帮助你根据需要选择合适的服务器。
服务器中的CPU称为处理器,它是接收、解释和传递指令的单元。 它还处理数据和执行任务,包括运行查询和提供网页。
多年来, 英特尔一直将x86服务器和工作站处理器称为“Xeon”。
至强产品线包括Xeon W处理器和Xeon可扩展处理器等等。可扩展处理器适用于使用多个插槽的工作站和服务器。其他的还有额外的特性,比如错误纠正代码(ECC)内存支持。更高级的变体具有更强的处理器能力和更多的缓存内存。
在选择至强服务器时应该注意什么?有时候真的很难确定何时需要在其他处理器上使用Xeon服务器。
下面是一些基本的区别,可以帮助你做出区分。
Xeon处理器和服务器在很大程度上比Core更昂贵。
例如,低速Xeon E3是低速型号。它与一些Core i5处理器一样便宜。这使得它对于一些资源不太密集的任务(如媒体服务器或电子商务托管)是一个很好的选择。
所有Xeon E3系列和几乎所有Core CPU都支持高达64GB的内存。但是,许多Xeon系统支持超过1TB的内存。
Xeon服务器和处理器最突出的特性之一是它们支持错误纠正代码(ECC)内存。
ECC内存可防止出现单位内存错误。基本上,它识别并纠正错误。这对于那些需要可靠性和正常运行时间的系统至关重要。
一些主流的英特尔Core处理器也支持ECC。但为了确保有ECC内存支持,还是需要Xeon。
缓存是处理器本身的一小部分内存。Core处理器的缓存小于或等于8MB。有些型号的内存可高达25MB。然而,Xeon E7 CPU有超过60MB的缓存。
任何给定处理器的工作速度取决于主频。
主频 是处理器生成和部署指令的速度,以赫兹(GHz)为单位。时钟越快,CPU每秒执行的指令就越多。
在决定使用处理器时,速度并不是一个可靠的特性。这是因为涡轮增压的出现使时钟速度可以根据工作负载进行更改。
主频和涡轮增压通常与功耗有关。热功率损耗(TDP)越低,主频越慢。较高的TDP通常具有较高的涡轮增压能力。具有多个内核的Xeon服务器的时钟速度较低。
除了Extreme版之外,所有Core CPU的TDP都低于100W。Xeon CPU高达165W。
一般来说,Xeon的功耗高于Core。Core可以更轻松地超频。
你运行的应用程序是否需要许多处理器内核、额外内存或者高内存带宽?也许这三个你都需要。如果是这样,你可能需要一个具有多个CPU的系统。
许多至强支持多个CPU, 他们通过使用附加的芯片技术来实现CPU之间的通信。通过这种方式,CPU可以共享内存访问并协调任务。
通过这种配置,每个CPU都有自己的一组内存模块和一个控制器。它也有自己的处理核心。这意味着更多的计算能力、内存和带宽。
许多服务器工作负载现在都是虚拟化的。
软件和 *** 作系统运行在由假硬件组成的独立“气泡”中。这样,一个主机 *** 作系统可以管理多个虚拟环境。
这个配置在一定程度上可以隔离在这个虚拟环境中发生的事情。为此,它需要具有硬件支持的唯一扩展。
Xeon CPU通常可以很好地支持这些扩展。大多数服务器和工作站级主板也支持它们。
无论你的小型企业需要服务器、存储服务器还是云工作站,Intel Xeon处理器都将提供可靠的性能和效率。
希望本文能帮助你更好地理解Xeon服务器及其核心对等产品。你选择的服务器类型取决于ni的业务需求。
x86是一个intel通用计算机系列的编号,也标识一套通用的计算机指令集合,由于早期intel的CPU编号都是如8086,80286来编号,由于这整个系列的CPU都是指令兼容的,所以都用X86来标识所使用的指令集合如今的奔腾,P2,P4,赛扬系列都是支持X86指令系统的,所以都属于X86家族
x86 family 6 model 65意思是这个CPU属于x86家族的第6代产品,采用65ns的工艺制造。
AT/AT COMPATIBLE 这个的意思应该是说兼容AT/AT指令。
CPU型号大全总结(推荐)
编者按:任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU也不例外,本文让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中,我们主要叙述了目前两大CPU巨头——Intel和AMD的产品发展历程,对于其他的CPU公司,例如Cyrix和IDT等,因为其产品我们极少见到,篇幅所限我们就不再累述了。
一、X86时代的CPU
CPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。
4004处理器核心架构图
1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。
1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为477MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。
Intel 8086处理器
1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有134万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。
Intel 80286处理器
1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含275万个晶体管,时钟频率为125MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。1990年推出的80386 SL和80386 DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386 SL与80386 DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式(SMM)。当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。
Intel 80386处理器
1989年,我们大家耳熟能详的80486芯片由INTEL推出,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是80486DX。1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。80486 DX2由系用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通讯。80486 DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。80486 DX4也是采用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到16KB。80486 DX4的时钟频率为100MHz,其运行速度比66MHz的80486 DX2快40%。80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。
[Page: ]
二、奔腾时代的CPU
继承着80486大获成功的东风,赚翻了几倍资金的INTEL在1993年推出了全新一代的高性能处理器——奔腾。由于CPU市场的竞争越来越趋向于激烈化,INTEL觉得不能再让AMD和其他公司用同样的名字来抢自己的饭碗了,于是提出了商标注册,由于在美国的法律里面是不能用阿拉伯数字注册的,于是INTEL玩了哥花样,用拉丁文去注册商标。奔腾在拉丁文里面就是“五”的意思了。INTEL公司还替它起了一个相当好听的中文名字——奔腾。奔腾的厂家代号是P54C,奔腾的内部含有的晶体管数量高达310万个,时钟频率由最初推出的60MHZ和66MHZ,后提高到200MHZ。单单是最初版本的66MHZ的奔腾微处理器,它的运算性能比33MHZ的80486 DX就提高了3倍多,而100MHZ的奔腾则比33MHZ的80486 DX要快6至8倍。也就是从奔腾开始,我们大家有了超频这样一个用尽量少的钱换取尽量多的性能的好方法。作为世界上第一个586级处理器,奔腾也是第一个令人超频的最多的处理器,由于奔腾的制造工艺优良,所以整个系列的CPU的浮点性能也是各种各样性能是CPU中最强的,可超频性能最大,因此赢得了586级CPU的大部分市场。奔腾家族里面的频率有60/66/75//90/100/120/133/150/166/200,至于CPU的内部频率则是从60MHz到66MHz不等。值得一提的是,从奔腾75开始,CPU的插座技术正式从以前的Socket4转换到同时支持Socket 5和7同时支持,其中Socket 7还一直沿用至今。而且所有的奔腾 CPU里面都已经内置了16K的一级缓存,这样使它的处理性能更加强大。
Intel 奔腾处理器
与此同时,AMD公司也不甘示弱推出了K5系列的CPU。(AMD公司也改名字了!)它的频率一共有六种:75/90/100/120/133/166,内部总线的频率和奔腾差不多,都是60或者66MHz,虽然它在浮点 运算方面比不上奔腾,但是由于K5系列CPU都内置了24KB的一级缓存,比奔腾内置的16KB多出了一半,因此在整数运算和系统整体性能方面甚至要高于同频率的奔腾。即便如此,因为k5系列的 交付日期一再后拖,AMD公司在“586”级别的竞争中最终还是败给了INTEL。
1、初受挫折——奔腾 Pro:
初步占据了一部分CPU市场的INTEL并没有停下自己的脚步,在其他公司还在不断追赶自己的奔腾之际,又在1996年推出了最新一代的第六代X86系列CPU——P6。P6只是它的研究代号,上市之后P6有了一个非常响亮的名字——奔腾 Pro。Pentimu Pro的内部含有高达550万个的晶体管,内部时钟频率为133MHZ,处理速度几乎是100MHZ的奔腾的2倍。Pentimu Pro的一级(片内)缓存为8KB指令和8KB数据。
Intel奔腾 Pro处理器
[Page: ]
值得注意的是在Pentimu Pro的一个封装中除Pentimu Pro芯片外还包括有一个256KB的二级缓存芯片,两个芯片之间用高频宽的内部通讯总线互连,处理器与高速缓存的连接线路也被安置在该封装中,这样就使高速缓存能更容易地运行在更高的频率上。奔腾 Pro 200MHZCPU的L2 CACHE就是运行在200MHZ,也就是工作在与处理器相同的频率上。这样的设计领奔腾 Pro达到了最高的性能。 而Pentimu Pro最引人注目的地方是它具有一项称为“动态执行”的创新技术,这是继奔腾在超标量体系结构上实现实破之后的又一次飞跃。Pentimu Pro系列的工作频率是150/166/180/200,一级缓存都是16KB,而前三者都有256KB的二级缓存,至于频率为200的CPU还分为三种版本,不同就在于他们的内置的缓存分别是256KB,512KB,1MB。不过由于当时缓存技术还没有成熟,加上当时缓存芯片还非常昂贵,因此尽管Pentimu Pro性能不错,但远没有达到抛离对手的程度,加上价格十分昂贵,一次Pentimu Pro实际上出售的数目非常至少,市场生命也非常的短,Pentimu Pro可以说是Intel第一个失败的产品。
2、辉煌的开始——奔腾 MMX:
INTEL吸取了奔腾 Pro的教训,在1996年底推出了奔腾系列的改进版本,厂家代号P55C,也就是我们平常所说的奔腾 MMX(多能奔腾)。这款处理器并没有集成当时卖力不讨好的二级缓存,而是独辟蹊径,采用MMX技术去增强性能。
MMX技术是INTEL最新发明的一项多媒体增强指令集技术,它的英文全称可以翻译“多媒体扩展指令集”。MMX是Intel公司在1996年为增强奔腾 CPU在音像、图形和通信应用方面而采取的新技术,为CPU增加了57条MMX指令,除了指令集中增加MMX指令外,还将CPU芯片内的L1缓存由原来的16KB增加到32KB(16K指命+16K数据),因此MMX CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60%左右。MMX技术不但是一个创新,而且还开创了CPU开发的新纪元,后来的SSE,3D NOW!等指令集也是从MMX发展演变过来的。
Intel奔腾MMX处理器
在Intel推出奔腾 MMX的几个月后,AM也推出了自己研制的新产品K6。K6系列CPU一共有五种频率,分别是:166/200/ 233/266/300,五种型号都采用了66外频,但是后来推出的233/266/300已经可以通过升级主板的BIOS 而支持100外频,所以CPU的性能得到了一个飞跃。特别值得一提的是他们的一级缓存都提高到了64KB,比MMX足足多了一倍,因此它的商业性能甚至还优于奔腾 MMX,但由于缺少了多媒体扩展指令集这道杀手锏,K6在包括游戏在内的多媒体性能要逊于奔腾 MMX。
3、优势的确立——奔腾 Ⅱ:
1997年五月,INTEL又推出了和奔腾 Pro同一个级别的产品,也就是影响力最大的CPU——奔腾 Ⅱ。第一代奔腾 Ⅱ核心称为Klamath。作为奔腾Ⅱ的第一代芯片,它运行在66MHz总线上,主频分233、266、300、333Mhz四种,接着又推出100Mhz总线的奔腾 Ⅱ,频率有300、350、400、450Mhz。奔腾II采用了与奔腾 Pro相同的核心结构,从而继承了原有奔腾 Pro处理器优秀的32位性能,但它加快了段寄存器写 *** 作的速度,并增加了MMX指令集,以加速16位 *** 作系统的执行速度。由于配备了可重命名的段寄存器,因此奔腾Ⅱ可以猜测地执行写 *** 作,并允许使用旧段值的指令与使用新段值的指令同时存在。在奔腾Ⅱ里面,Intel一改过去BiCMOS制造工艺的笨拙且耗电量大的双极硬件,将750万个晶体管压缩到一个203平方毫米的印模上。奔腾Ⅱ只比奔腾 Pro大6平方毫米,但它却比奔腾 Pro多容纳了200万个晶体管。由于使用只有028微米的扇出门尺寸,因此加快了这些晶体管的速度,从而达到了X86前所未有的时钟速度。
Intel奔腾Ⅱ处理器
[Page: ]
在接口技术方面,为了击跨INTEL的竞争对手,以及获得更加大的内部总线带宽,奔腾Ⅱ首次采用了最新的solt1接口标准,它不再用陶瓷封装,而是采用了一块带金属外壳的印刷电路板,该印刷电路板不但集成了处理器部件,而且还包括32KB的一级缓存。如要将奔腾Ⅱ处理器与单边插接卡(也称SEC卡)相连,只需将该印刷电路板(PCB)直接卡在SEC卡上。SEC卡的塑料封装外壳称为单边插接卡盒,也称SEC(Single-edgecontactCartridge)卡盒,其上带有奔腾Ⅱ的标志和奔腾Ⅱ印模的彩色图像。在SEC卡盒中,处理器封装与L2高速缓存和TagRAM均被接在一个底座(即SEC卡)上,而该底座的一边(容纳处理器核心的那一边)安装有一个铝制散热片,另一边则用黑塑料封起来。奔腾ⅡCPU内部集合了32KB片内L1高速缓存(16K指令/16K数据);57条MMX指令;8个64位的MMX寄存器。750万个晶体管组成的核心部分,是以203平方毫米的工艺制造出来的。处理器被固定到一个很小的印刷电路板(PCB)上,对双向的SMP有很好的支持。至于L2高速缓存则有,512K,属于四路级联片外同步突发式SRAM高速缓存。这些高速缓存的运行速度相当于核心处理器速度的一半(对于一个266MHz的CPU来说,即为133MHz)。奔腾Ⅱ的这种SEC卡设计是插到Slot1(尺寸大约相当于一个ISA插槽那么大)中。所有的Slot1主板都有一个由两个塑料支架组成的固定机构。一个SEC卡可以从两个塑料支架之间滑入Slot1中。将该SEC卡插入到位后,就可以将一个散热槽附着到其铝制散热片上。266MHz的奔腾Ⅱ运行起来只比200MHz的奔腾Pro稍热一些(其功率分别为382瓦和379瓦),但是由于SEC卡的尺寸较大,奔腾Ⅱ的散热槽几乎相当于Socket7或Socket8处理器所用的散热槽的两倍那么大。
除了用于普通用途的奔腾Ⅱ之外,Intel还推出了用于服务器和高端工作站的Xeon系列处理器采用了Slot 2插口技术,32KB 一级高速缓存,512KB及1MB的二级高速缓存,双重独立总线结构,100MHz系统总线,支持多达8个CPU。
Intel奔腾Ⅱ Xeon处理器
为了对抗不可一世的奔腾 Ⅱ,在1998年中,AMD推出了K6-2处理器,它的核心电压是22伏特,所以发热量比较低,一级缓存是64KB,更为重要的是,为了抗衡Intel的MMX指令集,AMD也开发了自己的多媒体指令集,命名为3DNow!。3DNow!是一组共21条新指 令,可提高三维图形、多媒体、以及浮点运算密集的个人电脑应用程序的运算能力,使三维图形加速全面地发挥性能。K6-2的所有型号都内置了3DNow!指令集, 使AMD公司的产品首次在某些程序应用中,在整数性能以及浮点运算性能都同时超越INTEL,让INTEL感觉到了危机。不过和奔腾 Ⅱ相比,K6-2仍然没有集成二级缓存,因此尽管广受好评,但始终没有能在市场占有率上战胜奔腾Ⅱ。
4、廉价高性能CPU的开端——Celeron:
在以往,个人电脑都是一件相对奢侈的产品,作为电脑核心部件的CPU,价格几乎都以千元来计算,不过随着时代的发展,大批用户急需廉价而使用的家庭电脑,连带对廉价CPU的需求也急剧增长了。
在奔腾 Ⅱ又再次获得成功之际,INTEL的头脑开始有点发热,飘飘然了起来,将全部力量都集中在高端市场上,从而给AMD,CYRIX等等公司造成了不少 乘虚而入的机会,眼看着性能价格比不如对手的产品,而且低端市场一再被蚕食,INTEL不能眼看着自己的发家之地就这样落入他人手中,又与1998年全新推出了面向低端市场,性能价格比相当厉害的CPU——Celeron,赛扬处理器。
早期Slot 1插座 Celeron处理器
[Page: ]
Celeron可以说是Intel为抢占低端市场而专门推出的,当时1000美元以下PC的热销,令AMD等中小公司在与Intel的抗争中打了个漂亮的翻身仗,也令Intel如芒刺在背。于是,Intel把奔腾 II的二级缓存和相关电路抽离出来,再把塑料盒子也去掉,再改一个名字,这就是Celeron。中文名称为赛扬处理器。 最初的Celeron采用035微米工艺制造,外频为66MHz,主频有266与300两款。接着又出现了025微米制造工艺的Celeron333。
不过在开始阶段,Celeron并不很受欢迎,最为人所诟病的是其抽掉了芯片上的L2 Cache,自从在奔腾 Ⅱ尝到甜头以后,大家都知道了二级缓存的重要性,因而想到赛扬其实是一个被阉割了的产品,性能肯定不怎么样。实际应用中也证实了这种想法,Celeron266装在技嘉BX主板上,性能比PII266下降超过25%!而相差最大的就是经常须要用到二级缓存的程序。
Intel也很快了解到这个情况,于是随机应变,推出了集成128KB二级缓存的Celeron,起始频率为300Mhz,为了和没有集成二级缓存的同频Celeron区分,它被命名为Celeron 300A。有一定使用电脑历史的朋友可能都会对这款CPU记忆犹新,它集成的二级缓存容量只有128KB,但它和CPU频率同步,而奔腾 Ⅱ只是CPU频率一半,因此Celeron 300A的性能和同频奔腾 Ⅱ非常接近。更诱人的是,这款CPU的超频性能奇好,大部分都可以轻松达到450Mhz的频率,要知道当时频率最高的奔腾 Ⅱ也只是这个频率,而价格是Celeron 300A的好几倍。这个系列的Celeron出了很多款,最高频率一直到566MHz,才被采用奔腾Ⅲ结构的第二代Celeron所代替。
为了降低成本,从Celeron 300A开始,Celeron又重投Socket插座的怀抱,但它不是采用奔腾MMX的Socket7,而是采用了Socket370插座方式,通过370个针脚与主板相连。从此,Socket370成为Celeron的标准插座结构,直到现在频率12Ghz的Celeron CPU也仍然采用这种插座。
5、世纪末的辉煌——奔腾III:
在99年初,Intel发布了第三代的奔腾处理器——奔腾III,第一批的奔腾III 处理器采用了Katmai内核,主频有450和500Mhz两种,这个内核最大的特点是更新了名为SSE的多媒体指令集,这个指令集在MMX的基础上添加了70条新指令,以增强三维和浮点应用,并且可以兼容以前的所有MMX程序。
不过平心而论,Katmai内核的奔腾III除了上述的SSE指令集以外,吸引人的地方并不多,它仍然基本保留了奔腾II的架构,采用025微米工艺,100Mhz的外频,Slot1的架构,512KB的二级缓存(以CPU的半速运行)因而性能提高的幅度并不大。不过在奔腾III刚上市时却掀起了很大的热潮,曾经有人以上万元的高价去买第一批的奔腾III。
第一代Pentium III处理器 (Katmai)
[Page: ]
可以大幅提升,从500Mhz开始,一直到113Ghz,还有就是超频性能大幅提高,幅度可以达到50%以上。此外它的二级缓存也改为和CPU主频同步,但容量缩小为256KB。
第二代Pentium III处理器 (Coppermine)
除了制程带来的改进以外,部分Coppermine 奔腾III还具备了133Mhz的总线频率和Socket370的插座,为了区分它们,Intel在133Mhz总线的奔腾III型号后面加了个“B”, Socket370插座后面加了个“E”,例如频率为550Mhz,外频为133Mhz的Socket370 奔腾III就被称为550EB。
看到Coppermine核心的奔腾III大受欢迎,Intel开始着手把Celeron处理器也转用了这个核心,在2000年中,推出了Coppermine128核心的Celeron处理器,俗称Celeron2,由于转用了018的工艺,Celeron的超频性能又得到了一次飞跃,超频幅度可以达到100%。
第二代Celeron(Coppermine128核心)处理器
6、AMD的绝地反击——Athlon
在AMD公司方面,刚开始时为了对抗奔腾III,曾经推出了K6-3处理器。K6-3处理器是三层高速缓存(TriLevel)结构设计,内建有64K的第一级高速缓存(Level 1)及256K的第二层高速缓存(Level 2),主板上则配置第三级高速缓存(Level 3)。K6-3处理器还支持增强型的3D Now!指令集。由于成本上和成品率方面的问题,K6-3处理器在台式机市场上并不是很成功,因此它逐渐从台式机市场消失,转进笔记本市场。
真正让AMD扬眉吐气的是原来代号K7的Athlon处理器。Athlon具备超标量、超管线、多流水线的Risc核心(3Way SuperScalar Risc core),采用025微米工艺,集成2,200万个晶体管,Athlon包含了三个解码器,三个整数执行单元(IEU),三个地址生成单元(AGU),三个多媒体单元(就是浮点运算单元),Athlon可以在同一个时钟周期同时执行三条浮点指令,每个浮点单元都是一个完全的管道。K7包含3个解码器,由解码器将解码后的macroOPS指令(K7把X86指令解码成macroOPS指令,把长短不一的X86指令转换成长短一致的macroOPS指令,可以充分发挥RISC核心的威力)送给指令控制单元,指令控制单元能同时控制(保存)72条指令。再把指令送给整数单元或多媒体单元。整数单元可以同时调度18条指令。每个整数单元都是一个独立的管道,调度单元可以对指令进行分支预测,可以乱序执行。K7的多媒体单元(也叫浮点单元)有可以重命名的堆栈寄存器,浮点调度单元同时可以调度36条指令,浮点寄存器可以保存88条指令。在三个浮点单元中,有一个加法器,一个乘法器,这两个单元可以执行MMX指令和3DNow指令。还有一个浮点单元负责数据的装载和保存。由于K7强大的浮
X86型的CPU经历了哪几代
与X86型的CPU经历了哪几代有关文章:
瑞星防火墙监测到一些程序创建TCP或UDP协议,请问这些协议都是做什么用的
升级CPU
互联网的接入方式有哪几种?
svchostexe占用CPU90%,电脑反应慢,占内存大
启动EXCEL软件,EXCEL工作界面是由哪几部分组成
810主板配合赛扬600好还是686配合雷鸟600好呢
CPU温度
用什么软件测试CPU真假和内存大小?
AGP显卡和AMD的CPU冲突发生死机
运行奥撕卡经典金曲全集时,不能打开,电脑显示如下:(本碟片要求P2以上CP…
服务器的特点
1、可扩展性
服务器必须具有一定的“可扩展性”,这是因为企业网络不可能长久不变,特别是在当今信息时代。如果服务器没有一定的可扩展性,当用户一增多就不能胜任的话,一台价值几万,甚至几十万的服务器在短时间内就要遭到淘汰,这是任何企业都无法承受的。为了保持可扩展性,通常需要在服务器上具备一定的可扩展空间和冗余件(如磁盘阵列架位、PCI和内存条插槽位等)。
可扩展性具体体现在硬盘是否可扩充,CPU是否可升级或扩展,系统是否支持WindowsNT、Linux或UNIX等多种可选主流 *** 作系统等方面,只有这样才能保持前期投资为后期充分利用。
2、易使用性
服务器的功能相对于PC机来说复杂许多,不仅指其硬件配置,更多的是指其软件系统配置。服务器要实现如此多的功能,没有全面的软件支持是无法想象的。但是软件系统一多,又可能造成服务器的使用性能下降,管理人员无法有效 *** 纵。所以许多服务器厂商在进行服务器的设计时,除了在服务器的可用性、稳定性等方面要充分考虑外,还必须在服务器的易使用性方面下足功夫。
服务器的易使用性主要体现在服务器是不是容易 *** 作,用户导航系统是不是完善,机箱设计是不是人性化,有没有关键恢复功能,是否有 *** 作系统备份,以及有没有足够的培训支持等方面。
3、可用性
对于一台服务器而言,一个非常重要的方面就是它的“可用性”,即所选服务器能满足长期稳定工作的要求,不能经常出问题。其实就等同于Sun所提出的可靠性(Reliability)。
因为服务器所面对的是整个网络的用户,而不是单个用户,在大中型企业中,通常要求服务器是永不中断的。在一些特殊应用领域,即使没有用户使用,有些服务器也得不间断地工作,因为它必须持续地为用户提供连接服务,而不管是在上班,还是下班,也不管是工作日,还是休息、节假日。这就是要求服务器必须具备极高的稳定性的根本原因。
一般来说专门的服务器都要7X24小时不间断地工作,特别像一些大型的网络服务器,如大公司所用服务器、网站服务器,以及提供公众服务iqdeWEB服务器等更是如此。对于这些服务器来说,也许真正工作开机的次数只有一次,那就是它刚买回全面安装配置好后投入正式使用的那一次,此后,它不间断地工作,一直到彻底报废。如果动不动就出毛病,则网络不可能保持长久正常运作。为了确保服务器具有高得“可用性”,除了要求各配件质量过关外,还可采取必要的技术和配置措施,如硬件冗余、在线诊断等。
4、易管理性
在服务器的主要特性中,还有一个重要特性,那就是服务器的“易管理性”。虽然我们说服务器需要不间断地持续工作,但再好的产品都有可能出现故障,拿人们常说的一句话来说就是:不
是不知道它可能坏,而是不知道它何时坏。服务器虽然在稳定性方面有足够保障,但也应有必要的避免出错的措施,以及时发现问题,而且出了故障也能及时得到维护。这不仅可减少服务器
出错的机会,同时还可大大提高服务器维护的效率。其实也就是Sun提出的可服务性(Serviceability)。
服务器的易管理性还体现在服务器有没有智能管理系统,有没有自动报警功能,是不是有独立与系统的管理系统,有没有液晶监视器等方面。只有这样,管理员才能轻松管理,高效工作。
服务器的分类
按照体系架构来区分,服务器主要分为两类:
非x86服务器
非x86服务器:包括大型机、小型机和UNIX服务器,它们是使用RISC(精简指令集)或EPIC(并行指令代码) 处理器,并且主要采用UNIX和其它专用 *** 作系统的服务器,精简指令集处理器主要有IBM公司的POWER和PowerPC处理器,SUN与富士通公司合作研发的SPARC处理器、EPIC处理器主要是Intel研发的安腾处理器等。这种服务器价格昂贵,体系封闭,但是稳定性好,性能强,主要用在金融、电信等大型企业的核心系统中。
x86服务器
x86服务器:又称CISC(复杂指令集)架构服务器,即通常所讲的PC服务器,它是基于PC机体系结构,使用Intel或其它兼容x86指令集的处理器芯片和Windows *** 作系统的服务器。价格便宜、兼容性好、稳定性较差、安全性不算太高,主要用在中小企业和非关键业务中。
按应用层次划分
按应用层次划分通常也称为“按服务器档次划分”或 “按网络规模”分,是服务器最为普遍的一种划分方法,它主要根据服务器在网络中应用的层次(或服务器的档次来)来划分的。要注意的是这里所指的服务器档次并不是按服务器CPU主频高低来划分,而是依据整个服务器的综合性能,特别是所采用的一些服务器专用技术来衡量的。按这种划分方法,服务器可分为:入门级服务器、工作组级服务器、部门级服务器、企业级服务器。
1、入门级服务器
这类服务器是最基础的一类服务器,也是最低档的服务器。随着PC技术的日益提高,许多入门级服务器与PC机的配置差不多,所以也有部分人认为入门级服务器与“PC服务器”等同。这类服务器所包含的服务器特性并不是很多,通常只具备以下几方面特性:
1有一些基本硬件的冗余,如硬盘、电源、风扇等,但不是必须的;
2通常采用SCSI接口硬盘,也有采用SATA串行接口的;
3部分部件支持热插拔,如硬盘和内存等,这些也不是必须的;
4通常只有一个CPU,但不是绝对;
5内存容量最大支持16GB。
这类服务器主要采用Windows或者NetWare网络 *** 作系统,可以充分满足办公室型的中小型网络用户的文件共享、数据处理、Internet接入及简单数据库应用的需求。这种服务器与一般的PC机很相似,有很多小型公司干脆就用一台高性能的品牌PC机作为服务器,所以这种服务器无论在性能上,还是价格上都与一台高性能PC品牌机相差无几。
入门级服务器所连的终端比较有限(通常为20台左右),况且在稳定性、可扩展性以及容错冗余性能较差,仅适用于没有大型数据库数据交换、日常工作网络流量不大,无需长期不间断开机的小型企业。不过要说明的一点就是目前有的比较大型的服务器开发、生产厂商在后面我们要讲的企业级服务器中也划分出几个档次,其中最低档的一个企业级服务器档次就是称之为"入门级企业级服务器",这里所讲的入门级并不是与我们上面所讲的"入门级"具有相同的含义,不过这种划分的还是比较少。还有一点就是,这种服务器一般采用Intel的专用服务器CPU芯片,是基于Intel架构(俗称"IA结构")的,当然这并不是一种硬性的标准规定,而是由于服务器的应用层次需要和价位的限制。
2、工作组服务器
工作组服务器是一个比入门级高一个层次的服务器,但仍属于低档服务器之类。从这个名字也可以看出,它只能连接一个工作组(50台左右)那么多用户,网络规模较小,服务器的稳定性也不像下面我们要讲的企业级服务器那样高的应用环境,当然在其它性能方面的要求也相应要低一些。工作组服务器具有以下几方面的主要特点:
1通常仅支持单或双CPU结构的应用服务器(但也不是绝对的,特别是SUN的工作组服务器就有能支持多达4个处理器的工作组服务器,当然这类型的服务器价格方面也就有些不同了)。
2可支持大容量的ECC内存和增强服务器管理功能的SM总线。
3功能较全面、可管理性强,且易于维护。
4采用Intel服务器CPU和Windows/NetWare网络 *** 作系统,但也有一部分是采用UNIX系列 *** 作系统的。
5可以满足中小型网络用户的数据处理、文件共享、Internet接入及简单数据库应用的需求。
工作组服务器较入门级服务器来说性能有所提高,功能有所增强,有一定的可扩展性,但容错和冗余性能仍不完善、也不能满足大型数据库系统的应用,但价格也比前者贵许多,一般相当于2~3台高性能的PC品牌机总价。
3、部门级服务器
这类服务器是属于中档服务器之列,一般都是支持双CPU以上的对称处理器结构,具备比较完全的硬件配置,如磁盘阵列、存储托架等。部门级服务器的最大特点就是,除了具有工作组服务器全部服务器特点外,还集成了大量的监测及管理电路,具有全面的服务器管理能力,可监测如温度、电压、风扇、机箱等状态参数,结合标准服务器管理软件,使管理人员及时了解服务器的工作状况。同时,大多数部门级服务器具有优良的系统扩展性,能够满足用户在业务量迅速增大时能够及时在线升级系统,充分保护了用户的投资。它是企业网络中分散的各基层数据采集单位与最高层的数据中心保持顺利连通的必要环节,一般为中型企业的首选,也可用于金融、邮电等行业。
部门级服务器一般采用IBM、SUN和HP各自开发的CPU芯片,这类芯片一般是RISC结构,所采用的 *** 作系统一般是UNIX系列 *** 作系统,LINUX也在部门级服务器中得到了广泛应用。
部门级服务器可连接100个左右的计算机用户、适用于对处理速度和系统可靠性高一些的中小型企业网络,其硬件配置相对较高,其可靠性比工作组级服务器要高一些,当然其价格也较高(通常为5台左右高性能PC机价格总和)。由于这类服务器需要安装比较多的部件,所以机箱通常较大,采用机柜式的。
4、企业级服务器
企业级服务器是属于高档服务器行列,正因如此,能生产这种服务器的企业也不是很多,但同样因没有行业标准硬件规定企业级服务器需达到什么水平,所以也看到了许多本不具备开发、生产企业级服务器水平的企业声称自己有了企业级服务器。企业级服务器最起码是采用4个以上CPU的对称处理器结构,有的高达几十个。
另外一般还具有独立的双PCI通道和内存扩展板设计,具有高内存带宽、大容量热插拔硬盘和热插拔电源、超强的数据处理能力和群集性能等。这种企业级服务器的机箱就更大了,一般为机柜式的,有的还由几个机柜来组成,像大型机一样。企业级服务器产品除了具有部门级服务器全部服务器特性外,最大的特点就是它还具有高度的容错能力、优良的扩展性能、故障预报警功能、在线诊断和RAM、PCI、CPU等具有热插拔性能。有的企业级服务器还引入了大型计算机的许多优良特性。这类服务器所采用的芯片也都是几大服务器开发、生产厂商自己开发的独有CPU芯片,所采用的 *** 作系统一般也是UNIX(Solaris)或LINUX。
企业级服务器适合运行在需要处理大量数据、高处理速度和对可靠性要求极高的金融、证券、交通、邮电、通信或大型企业。企业级服务器用于联网计算机在数百台以上、对处理速度和数据安全要求非常高的大型网络。企业级服务器的硬件配置最高,系统可靠性也最强。
服务器中配置固态硬盘已经是一个普遍的选择,特别是如果只有很小比例的服务器存在性能问题的话尤其如此。固态硬盘可以帮助用户解决服务器性能的瓶颈。固态硬盘也可以让高速存储更加的接近处理器并将共享存储网络这个潜在的瓶颈剔除掉。目前有三种固态硬盘的形式作为达标:即硬盘驱动型SSD,SSD DIMM和PCIs SSD。
5、典型服务器应用
办公OA服务器
ERP服务器
WEB服务器
数据库服务器
财务服务器
邮件服务器
打印服务器
集群服务器
无盘办公系统
无盘网吧服务器
无盘教学系统
视频监控服务器
流媒体服务器
VOD视频点播服务器
网络下载
SP服务
网络教学服务器
IDC-主机出租
IDC-虚拟空间
IDC-网游
IDC-主机托管
游戏服务器
高性能计算(HPC)
桌面超算
论坛服务器
服务器的简介
服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。
服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
在网络环境下,根据服务器提供的服务类型不同,分为文件服务器,数据库服务器,应用程序服务器,WEB服务器等。
服务器的安全问题
1、服务器所处运行环境不佳
对于计算机网络服务器来说,运行的环境是非常重要的。其中所指的环境主要包括运行温度和空气湿度两个方面。网络服务器与电力的关系是非常紧密的,电力是保证其正常运行的能源支撑基础,电力设备对于运行环境的温度和湿度要求通常来说是比较严格的,在温度较高的情况下,网络服务器与其电源的整体温度也会不断升高,如果超出温度耐受临界值,设备会受到不同程度的损坏,严重者甚至会引发火灾。如果环境中的湿度过高,网络服务器中会集结大量水汽,很容易引发漏电事故,严重威胁使用人员的人身安全。
2、缺乏正确的网络服务器安全维护意识
系统在运行期间,部分计算机用户由于缺乏基本的网络服务器安全维护意识,对于网络服务器的安全维护不能给予充分重视。计算机在长期使用的过程中,缺少有效的安全维护措施,最终导致网络服务器出现一系列运行故障。与此同时,某些用户由于没有选择正确的防火墙软件,系统不断出现各种漏洞,用户个人信息极易遭到泄露。
3、服务器系统漏洞过多
计算机网络本身具有开放自由的特性,这种属性既存在技术性优势,在某种程度上也会对计算机系统的安全造成威胁。一旦系统中出现很难修复的程序漏洞,某些不法人员很可能借助漏洞对缓冲区进行信息查找,然后攻击计算机系统,这样一来,不但用户信息面临泄露的风险,计算机运行系统也会遭到损坏。
服务器的维护保养
1、注重机房环境的建设
机房环境对服务器的正常运转有着重要的影响作用。因此,服务器维护和保养的首要环节就是做好机房环境建设。机房要保证充足的空间,用以安装和配置服务器的相关设备,机房的隔断,地板等要做好防静电等细节处理。机房的防火工作也很关键,要做好墙面和电缆等的防火处理。一旦遇到火情等,如何保障设备的安全,如何保障人员的有序撤离等都是机房建设中需要考虑的因素。机房的温度和湿度也应当 *** 持在一定的范围,温度和湿度对于电子产品的正常工作有着非常大的影响作用。服务器是电子设备中对温度和湿度都较为敏感的设备。如果服务器所在的机房太过于干燥,那么人员在机房中与设备接触的过程中非常容易产生静电。这种静电一般都有几千伏乃至上万伏,这对服务器的正常运行时非常危险的,极易引起严重的事故。如何科学合理的做好机房布局和管理工作是机房建设的关键。目前我国的计算机服务器机房管理还存在着很多需要完善的地方,比如机房的管理现代化水平还不高,很多监测和维护工作还单纯依靠人力完成,没有形成信息化和网络化的管理机制。其实,电子检测系统不管是在设计上还是在实施上并没有多少难度,但由于我们重视程度的不够,机房建设的总体水平依然在低位徘徊。
服务器的硬件组成较为复杂,对于服务器硬件的维护应由专业人员进行。在维护和保养存储设备时,我们首先应当对其容量进行测试,看是否需要进行扩容等 *** 作。存储容量一定要能满足任务的需求,并留有一定的冗余量。在拆卸和更新服务器设备时,务必让设备处于断电状态并进行接地处理。即便是更换最简单的部件,这些环节也不能省略。对于一些不熟悉的部件,要反复仔细的阅读说明书和参照文件,在没有十足把握的前提下切忌盲目拆解。要定期对服务器进行除尘处理。灰尘对硬件的工作有着很强的影响,特别是服务器这种高温高速运行的设备,大量的积尘对设备造成的伤害往往是致命的。除尘工作要科学有序的进行,不能想当然,也不能蛮干。在除尘过程中特别注意对电源系统的保护。
3、维护好服务器软件
软件是服务器的重要组成部分,服务器的稳定高效运行离不开相应的软件。我们要定期对服务器的软件系统进行巡检,及时发现漏洞,及时安装官方给定的补丁程序。在扩展服务器数据库时,在条件允许的情况下,最好对原有数据进行备份,以免造成不必要的损失。
4、做好电力控制
做好电力控制。没有稳定的电力保证,服务器就没有办法正常工作。电子控制是一个非常关键,但又非常容易被忽视的问题。在机房建设之初,我们就应当充分考虑到服务器的电力保障。要为机房设计和配置一套稳定,可靠的电力供应系统。这套系统还要有处置和应对突发事件的能力,例如,不可预知的停电、雷电等。
5、密码管理
服务器的密码管理是服务器防御能力的最关键组成部分。密码的管理和更换应当形成一套长效机制。我们要定期对服务器的密码进行更换,密码应有专人管理。选用的密码要有一定的专业性,一定的复杂度,最好是将数字和字母等结合起来,大小写也要融合进去。在日常的检查中,我们要做好登统计,关闭一些不太使用的端口。
x86是最早由intel开发出来的一种cpu架构,后来许多其它的公司也开发出了自己的x86 cpu。unix只是一个 *** 作系统,并不是一种服务器,只不过它大多被应用在小型机服务器上,unix的使用范围一般之局限于小型机上,像中大型机都是有自己的专用 *** 作系统,是不使用unix的,而PC上用的比较多的就是众所周知的Unix的儿子,linux。
x 86系列都是cisc指令集的,我们现在的pc上所使用的cpu基本都是x86架构的cisc。
当下所说的服务器一般指的是pc server 和小型机,pc server中多使用Windows和linux,使用的也是x86架构的cpu,而小型机则不同,各个厂商的小型机所使用的cpu都是自己开发的,像alpha、hp、ibm、sun等,他们都是risc指令集的cpu,比如intel的用在hp最新小型机上的安腾cpu就不是x86架构的,因为pc和服务器对cpu的要求有很大的差别,所以几乎所有的小型机上使用的都是risc指令集的cpu。
虽然在当前使用linux *** 作系统的服务器占了70%,但这70%里大部分都是pc server,一般用在一些灵活性要求比较高的地方,比如:网络公司。而那使用Unix *** 作系统的20%都是小型机,一般都是用在大型的数据交换中心,通信中心,和一些非常重要的地方,这是linux根本无法比拟的地方。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)