随着业务的发展、服务器规模的扩大,才及云化(公有云和混合云)、虚拟化的逐步落实,运维工作就扩展到了容量管理、d性(自动化)扩缩容、安全管理,以及(引入各种容器、开源框架带来的复杂度提高而导致的)故障分析和定位等范围。
听上去每一类工作都不简单。不过,好在这些领域都有成熟的解决方案、开源软件和系统,运维工作的重点就是如何应用好这些工具来解决问题。
传统的运维工作经过不断发展(服务器规模的不断扩大),大致经历了人工、工具和自动化、平台化和智能运维(AIOps)几个阶段。这里的AIOps不是指Artificial Intelligence for IT Operations,而是指Algorithmic IT Operations(基于Gartner的定义标准)。
基于算法的IT运维,能利用数据和算法提高运维的自动化程度和效率,比如将其用于告警收敛和合并、Root分析、关联分析、容量评估、自动扩缩容等运维工作中。
在Monitoring(监控)、Service Desk(服务台)、Automation(自动化)之上,利用大数据和机器学习持续优化,用机器智能扩展人类的能力极限,这就是智能运维的实质含义。
智能运维具体的落地方式,各团队也都在摸索中,较早见效的是在异常检测、故障分析和定位(有赖于业务系统标准化的推进)等方面的应用。智能运维平台逻辑架构如图所示。
智能运维平台逻辑架构图
智能运维决不是一个跳跃发展的过程,而是一个长期演进的系统,其根基还是运维自动化、监控、数据收集、分析和处理等具体的工程。人们很容易忽略智能运维在工程上的投入,认为只要有算法就可以了,其实工程能力和算法能力在这里同样重要。
智能运维需要解决的问题有:海量数据存储、分析、处理,多维度,多数据源,信息过载,复杂业务模型下的故障定位。这些难题是否会随着智能运维的深入应用而得到一定程度的解决呢?我们会在下一篇文章中逐步展开这些问题,并提供一些解决方案。
本文选自《智能运维:从0搭建大规模分布式AIOps系统》,作者彭冬、朱伟、刘俊等,电子工业出版社2018年7月出版。
本书结合大企业的智能运维实践,全面完整地介绍智能运维的技术体系,让读者更加了解运维技术的现状和发展。同时,帮助运维工程师在一定程度上了解机器学习的常见算法模型,以及如何将它们应用到运维工作中。
1、安装和设置防火墙
现在有许多基于硬件或软件的防火墙,许多安全厂商也都相继推出了相关的产品。要保证服务器的安全,安装防火墙非常必要。防火墙对于非法访问具有很好的预防作用,但是安装了防火墙并不等于服务器安全了。新手可以用服务器在iis7远程桌面下测试。在安装防火墙之后,你需要根据自身的网络环境,对防火墙进行适当的配置以达到最好的防护效果。
2、定期对服务器进行备份
为防止不能预料的系统故障或用户不小心的非法 *** 作导致数据丢失,必须对系统进行安全备份。除了对全系统进行每月一次的备份外,还应对修改过的数据进行每周一次的备份。同时,应该将修改过的重要系统文件存放在不同服务器上,以便出现系统崩溃时,可以及时地将系统恢复到正常状态。
3、及时安装系统补丁
不论是Windows还是Linux,任何大家 *** 作系统都有漏洞,及时的打上补丁避免漏洞被蓄意攻击利用,是服务器安全最重要的保证之一。
4、账号和密码保护
账号和密码保护可以说是服务器系统的第一道防线,目前网上大部分对服务器系统的攻击都是从截获或猜测密码开始。一旦黑客进入了系统,那么前面的防卫措施几乎就失去了作用,所以对服务器系统管理员的账号和密码进行管理是保证系统安全非常重要的措施。
5、安装网络杀毒软件
如今在互联网上,病毒的传播非常猖獗,因此,在网络服务器上安装网络版的杀毒软件来控制病毒传播显得尤为重要。同时,在使用杀毒软件时,必须要定期或及时升级杀毒软件,坚持每天自动更新病毒库。
6、监测系统日志
运行系统日志程序,系统会记录下所有用户使用系统的情形,包括最近登录时间、使用的账号、进行的活动等。日志程序会定期生成报表,通过对报表进行分析,你可以知道是否有异常现象。
立足数据中心运维管理的现状,顺应时代发展的潮流,充分利用信息技术的机遇,利用现有资源对数据中心的运维管理加强完善和创新,为行业的发展,国家的进步贡献力量。
1大数据时代数据中心运维管理的现状
大数据时代作为时代发展的机遇出现在大众视野,但是也是作为挑战逐步渗透在行业的数据中心运维管理中。以计算机技术为依托的数据中心运维管理的显著特点就是大规模的数据流量,正在不断与原有的数据中心架构产生冲突。
目前,大数据时代的数据中心运维管理的先进意识已经深入人心,但是实际项目 *** 作过程中会有众多的问题出现。因为在磨合期,所以现有设备不能满足大数据时代的数据中心管理要求;运维管理人员的没有经过大数据时代新的运维管理思路的熏陶,技术水平与之不匹配;还有就是数据中心的运维管理制度不都完善,相应的管理水平不高。
2解决数据中心运维管理困境的策略
针对目前数据中心运维管理的困境,本文提出了相应的解决策略,以供业界参考。
21 提升运维管理人员的整体能力
基于目前数据中心运维管理工作人员的实际能力,通过采取以下积极的措施来提升运维管理工作人员的综合能力水平。
211 大数据背景下,强化数据中心运维管理人员的技术应用水平
通过多维度的检验途径,比如定期检查该技术的理论与实践水平确定工作人员的当前能力,在制定符合目前技术短板的相关培训,从而保证运维管理工作的顺利进行。
212 加强管理方面的知识渗透
在加强数据中心运维管理人员的技术应用水平的前提下,可以加强管理学知识的渗透,为技术团队的整体语言表达能力的提升以及为管理层储备后续力量,既懂技术又懂管理的新世纪人才,有助于数据中心运维管理工作更加高质量的完成。
213 加强工作人员执行力,更高效的完成工作
在数据中心运维管理的众多评价标准中,执行力是影响一个团队整体运作能力很重要的一个指标,良好的执行力可以保证时间段内的工作目标提前完成或者超量完成。
22 强化业务管理工作和业务培训工作
现如今,科学技术的更新速度往往超出人们的接受速度,在数据中心运维管理这个领域也同样适用。所以使得运维管理人员刚刚熟练掌握新的运维既能并熟练应用,新的技术又刷新了行业应用领域。所以设立专门的培训机构,强化管理人员终身学习的意识,紧跟时代发展的脚步。
221 制定合理的业务培训和业务管理培训计划
科学合理的方案总能给与人们正确的指导,并保证在规定期限内达到既定目标。运维管理培训和业务培训的内容要与时俱进,不断为管理人员灌输新的知识,为运维管理的工作融入新鲜的血液。
222 合理安排培训时间
运维工作人员在企业内是员工,男性员工在家庭里是儿子,是丈夫,是爸爸,所以要协调好培训的时间,保证员工能充分解决员工之外的各种事情,全身心的投入工作。
223 使业务管理和业务培训的形式呈现多元化
公司管理层应加强与行业内部个组织间的联系,比如同专业的大学、同行业资深专家、专业讲座等等。通过多元形式的学习加深对行业发展的了解,并积极促进管理人员的专业素养。
224 定期进行培训效果的考核
在定期进行学习之余,为检验学习效果是否达到预期目标,应适时进行检验,进一步促进运维工作人员的学习质量的提升,提升其主观学习的动力。
总之,强化对运维工作人员的业务培训,能够有效地对运维工作者的维修技术进行与时俱进的培训,能够有利于运维管理工作人员进行数据中心运维管理工作的开展,最终有利于信息技术飞速发展下的运维工作的稳定进行。
23 加强了解整体行业环境的意识
有些企业的运维管理的硬件设施和软件配备欠缺,造成整体的管理水平低,是因为企业没有采取相应的举措保障。以下将详细讲述如何提升整体行业环境的了解。
(2)定期组织团队中的成员进行行业发展前景的探讨,在探讨交流的过程中了解当下运维管理工作的总趋势,从而能够为运维工作的有效进行提供有价值的参考意见。
总之,强化了解和分析业务环境的意识,能够有利于运维管理工作人员有行业的危机意识和行业的发展意识以及个人职业规划意识的提升,最终有利于大数据时代数据中心运维管理工作的顺利开展。
3大数据时代下,技术层面面临的挑战
31动力环境监控系统概述
通过应用数据采集系统,计算机和网络技术,逐步完成数据中心运维管理动力电源供电设备的运行和机房的监控的平台就是数据中心动力环境监控系统。
32 动力环境监控数据的特点。
通过采集数据中心的关键指标数据,针对实际运行情况实现预警功能、远程功能以及运行监测功能。动力环境监控数据具有其本身特点。
321 数据结构化、格式化程度高
因系统采集到的实时监控数据大都存储于数据库中,因而动环监控数据结构化、格式化程度高,这也为数据挖掘提供了便利。
322 实时更新
动力环境监控系统运行的最底保证便是数据的准确性和实时更新,其数据采集的更新时间间隔为每秒。
323 时序性
动力环境监控系统实时记录的环境温度、环境湿度等数据都是随时间更替而进行采集的。
33 数据挖掘提高告警信息准确性
动力监控系统是以计算机为载体,以信息技术为依托的技术,所以其产生的大规模数据也是大数据时代一个突出的特点。就目前而言大规模的数量利用率较低,即使专业水准较高的管理人员也会深感难度高、工作量大,与现有的技术水平不能完好对接。
数据挖掘技术的出现解决了目前的难题。数据挖掘中关联分析方法解决了数据中心运维管理中不明原因的重复警报,为运维管理的工作有序进行提供了基础,并为专业水平较低的运维人员提升了工作效率。
33 运维经验知识化的工作模式需要改进
据以往的运维工作人员的叙述,过度依赖专家给与的指导经验,成为行业内部的不良风气。首先运维专家的培养周期较长,短时间没有任何效益输出;其次专家的意见偶尔会带有强烈的主管色彩,但是对于实际 *** 作过程并不适用,最终导致工作的延误;最后就是过度依赖专家,若运维专家不在职装天下将会对运维管理工作造成重创,不具有可持续性。
所以建立关于数据中心运维管理的内部数据和外部数据,为现有的运维人员过度依赖专家的不良习惯提出解决方案。内部数据主要是指内部运维经验;外部数据是指来源于互联网的运维知识。对于收集到的内外部数据,利用文本挖掘、聚类、分类预测等方法对信息进行加工展现,转化成知识库中的知识,并实现对信息的快速、自动化检索。
34 资源调度成为容量管理的关键
在大数据时代下,数据中心存储容量指标是指机位空间指标等,尤其是计算资源指标,是其组成的关键部分。需要最新的数据中心运维管理平台实现监测服务器、使用网络以及存储资源等功能,根据实际情况进行管理策略的变动和资源的优化配置。
云计算技术已成为数据中心运维管理的核心,并打破传统的数据运维管理信息系统结构,建立一个全新的集计算、存储、和网络三维一体的虚拟资源库,通过实际的 *** 作,实现现有资源的动态优化配置。
虚拟化技术可以保证存储环节中大规模数据的安全性,在逐步实现数据资源的重复使用、关联以及动态管理等动能的同时,也为运维管理人员提出了巨大的挑战。故此,通过科学合理的分析容量数据,构建完善的资源调度制度,实现实现新一代数据中心资源在应用间的动态分配,将成为大数据时代下数据中心运维管理的一大挑战。
4结束语
为顺应大数据时代的潮流,必须进行数据中心运维管理的深度优化,为数据中心的整体发展提供新鲜的 科技 动力。通过提升运维管理人员各方面的能力还有利用先进的动力环境监控系统技术,为数据中心的运维管理提供强大的人力支持和技术支持,助力大数据时代背景下,数据中心运维管理的长足发展。
参考文献
[1]朱玉立,任义延,高甲子等,浅谈大数据时代下的数据中心运维管理[J]信息系统工程,2015
[2]解林超,石佳,王仲锋等。大数据时代对传统数据中心的影响及思考[J]中国新通信,2014
[3]周焘。大数据时代的档案大编研[J]陕西档案,2014
[4]陈艺高,动环大数据,提升运维效能[J]通信电源技术,2014
[5]张隽轩,张文利,黄毅。数据中心运维系统应用ITIL管理体系分析[J]智能建筑与城市信息,2015
[6]宋维佳,马皓,肖臻,张晓军,张蓓虚拟化数据中心资源调度研究[J]广西大学学报:自然科学版,2011,36(01):330-334
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)