未来,将有数十亿台设备连接到互联网,更快、更可靠的数据处理将变得至关重要。近年来,云计算的整合和集中化性质被证明具有成本效益和灵活性,但物联网和移动计算的兴起给网络带宽带来了不小的压力。最终,并不是所有的智能设备都需要利用云计算来运行。在某些情况下,这种数据的往返传输,也应该能够一一避免。由此,边缘计算应运而生。
边缘计算被描述为“微型数据中心的网状网络,在本地处理或存储关键数据,并将所有接收到的数据推送到中央数据中心或云存储库,其覆盖范围不到10㎡”——摘录自《新基建时代智慧灯杆建设指南》
边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。
自动化事实上是一个以“控制”为核心。控制是基于“信号”的,而“计算”则是基于数据进行的,更多意义是指“策略”、“规划”,因此,它更多聚焦于在“调度、优化、路径”。就像对全国的高铁进行调度的系统一样,每增加一个车次减少都会引发调度系统的调整,它是基于时间和节点的运筹与规划问题。边缘计算在工业领域的应用更多是这类“计算”。
简单地说,传统自动控制基于信号的控制,而边缘计算则可以理解为“基于信息的控制”。
值得注意的是,边缘计算、雾计算虽然说的是低延时,但是其50mS、100mS这种周期对于高精度机床、机器人、高速图文印刷系统的100μS这样的“控制任务”而言,仍然是非常大的延迟的,边缘计算所谓的“实时”,从自动化行业的视角来看——很不幸,依然被归在“非实时”的应用里的。
“数字新基建”主要围绕着ABCD四方面发展,A是人工智能、B是区块链、C是云、D是大数据,随着5G的快速推进,给ABCD插上翅膀,算力的不断下沉,将会涌现很多有趣的垂直行业应用场景,为边缘端更好实现技术赋能提供了价值。
以当前比较热门的自动驾驶来说,同样是边缘计算最重要的应用场景之一。在自动驾驶场景中,车辆需要做到比驾驶员更快的响应决策速度,也就是说最多只有零点几毫秒时间,同时还要能够自动感知到行车过程中周围车辆、行人、甚至整条路况的实时信息。如果按传统以云中心集中计算为主的决策架构,这对于要做到和人一样反应的自动驾驶来说时间太长了,所以如果没有边缘计算,如果数据的感知处理、控制的决策不能在车辆上本地进行,自动驾驶就会成为空中楼阁。
通过边缘计算的应用,以车辆本身的边缘计算,以及车路协同形式,在道路两旁会部署一些小型智能服务器,就近接收来自周围车辆的信息流,迅速作出响应和决策,同时这些小型的智能服务器也能接收来自云中心下达的控制指令,从而达到车路协同要求。未来甚至红绿灯可能会消失,因为道路知道周围车辆的速度、距离等信息,能够实时对周围车辆发出控制指令,车辆也能够根据来自道路的消息,以及车辆自身的边缘计算实时做出决策,整个过程将实现非常高效的协同。
目前许多智能化的改造,边缘计算已经能够积极的应用在许多场景之上,例如智能驾驶、智能工厂、智能电网、智能家居、智能建筑,很多都是边缘计算的场景。
再举例来说,电网有很多高压线、变电箱,人力的运维成本太大、危险系数也很高,传统的故障巡检机制网络传输带宽消耗大、故障告警处理不实时、而且电力系统数据本身关系到国计民生,数据传输过程中的安全性极其重要。
落地边缘计算之后,借助于边缘智能技术,可以在设备边缘侧几乎准实时地自动检测出问题出现的具体位置,比方说在配电房内安装边缘计算装置,布置AI模型,边缘计算装置连接配电房里面所有的电力设备,实时采集每一个设备的状态,利用高清夜视摄像头,还可以对烟雾、起火进行实时AI推理、故障告警和处理,效率能够得到极大的提升,同时由于大部分数据都在边缘侧本地处理,无需全部传输上报至云端集中处理,因而极大降低了网络传输流量、减少了数据在传输过程中的暴露面,数据安全性也自然得到了提升。“边缘计算”的概念本身并不是一个“新鲜词”。早在2003年,CDN服务商Akamai就与IBM合作推出了最早的“边缘计算”。如果以时间维度看,从亚马逊在2006年推出AWS看作是云计算的起点开始,那么它要比云计算被提出的时间更更加的早。
不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。
云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
云计算vs边缘计算
云计算的不足
随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 15GB 的数据。随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。海量数据的即时处理可能会使云计算力不从心。隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。
边缘计算的优势和发展
边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。
优势二:更靠近终端设备,传输更安全,数据处理更即时。
优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。边缘计算的优势是:
1速度和延迟
处理数据的时间越长,相关性就越低。在数字工厂中,毫秒很重要,因为基于智能的系统会持续监控生产过程的各个方面,以确保数据的一致性,而将数据分析限制在创建它的边缘可以消除延迟,从而转化为更快的响应时间。
2安全性
一次DDoS(分布式拒绝服务)攻击就可以中断一家跨国公司的整个运营。当您将您的数据分析工具分布在企业中时,您也同时分布了风险。另一个固有的事实是,当您传输更少的数据时,可以被拦截的数据就越少。边缘计算还可以帮助公司克服本地合规性和隐私法规以及数据主权的问题。
3成本节约
边缘计算允许您从管理角度对数据进行分类。通过在边缘位置保留尽可能多的数据,您可以减少连接所有位置所需的昂贵带宽,并且带宽可以直接转化为货币。边缘计算还有助于在一定程度上减少数据冗余,帮助您减少冗余成本。
4更高的可靠性
许多物联网包括一些相当偏远的地区,包括农村和不太理想的互联网连接环境。当边缘设备能够在本地存储和处理后续数据时,可靠性就得到了提升。如今,预制微数据中心的构建几乎可以在任何环境中运行。这意味着,间歇性连接的临时中断不会仅仅因为智能设备失去与云的连接就影响它们的运行。
5可扩展性
尽管这个想法边缘计算提供可扩展性的优势可能看起来与宣传的理论相反,但实际上是有意义的。即使对于云计算架构,在大多数情况下,数据也必须首先转发到位于中央的数据中心。扩展甚至只是修改专用数据中心都是一项昂贵的提议。
看你是哪里的了。江苏地区可以看看腾云创智的服务器,或者在江大科技园那边有IBM,软通动力等云计算服务商咨询下哦。购买服务器注意点的话就是云计算是按需服务的,看你企业是做什么的,大概需要多少容量。不够可以增加的。感兴趣的话点击此处,免费了解一下云服务器(Elastic Compute Service, ECS)是一种简单高效、安全可靠、处理能力可d性伸缩的计算服务。其管理方式比物理服务器更简单高效。用户无需提前购买硬件,即可迅速创建或释放任意多台云服务器。
云服务器帮助您快速构建更稳定、安全的应用,降低开发运维的难度和整体IT成本,使您能够更专注于核心业务的创新。
亿万克作为中国战略性新兴产业领军品牌,拥有中国第一、世界前二的行业领先技术,致力于新型数据中心建设,构筑云端安全数字底座,为客户提供集产品研发、生产、部署、运维于一体的服务器及IT系统解决方案业务,所有产品和技术完全拥有自主知识产权,应用领域涵盖云计算、数据中心、边缘计算、人工智能、金融、电信、教育、能源等,为客户提供全方位安全自主可控技术服务保障。
5G边缘计算物联网关的出现意义重大,随着物联网不断扩大的用户网络和不断增长的数据量,网络性能不受影响是企业面临的巨大挑战,因此边缘计算正成为物联网的解决方案。
5G边缘计算物联网关可以保持较高的连接速度并最小化延迟,收集和产生的数据将在更靠近设备本身的地方进行处理,而不是通过远距离传输到集中的数据中心或云中进行处理。利用占用空间很少的微型数据中心网状网络,边缘计算使组织能够实时收集并分析重要数据,而不会增加现有基础设施的负担。
5G边缘计算物联网关功能配置
1、强大的数据采集功能,可实现串口数据、模拟量和开关量信号、2路局域网数据的采集并转发至指定服务器。
2、支持视频传输、支持视频数据叠加、支持抓拍功能(定制)。
3、行业接口丰富可兼容采集多种工业传感器采集需求,RS232接口、RS485接口、I2C接口、TTL电平串口、开关量输入接口、模拟量输入接口、继电器输出、电源输出(外设供电)等。
4、通信灵活,集5G/4G网络、广域网、局域网、GPRS、WIFI(可选)等多种通信方式,可选NB-IOT通信方式。
5、丰富协议库,支持ModbusRTU、ModbusTCP、MQTT、OPC、>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)