分布式:服务分散部署在不同服务器组成一个整体应用,分散压力,解决高并发。
假设访问量特别大,就可以做成分布式,将一个大项目拆分出来单独运行。跟cdn一样的机制。
Redis分布式:将redis中的数据分布到不同的服务器上,每台服务器存储不同内容。Mysql集群是每台服务器都存放相同数据。分布式部署:系统应用部署在2台或以上服务器或虚拟机上,服务间通过RPC、WCF(包含WebService)等交互,即可称作分布式部署。微服务也算作分布式的一种,反之则不然。分布式优点:1、将模块拆分,使用接口通信,降低模块之间的耦合度。2、将项目拆分成若干个子项目,不同团队负责不同子项目。3、增加功能时只需再加一个子项目,调用其它系统接口即可。4、可灵活进行分布式部署。5、提高代码的复用性,比如service层,如果不采用分布式rest服务方式架构,在手机Wap商城、微信商城、PC、Android、ios每个端都要写一个service层逻辑,开发量大,难以维护和一起升级,此时可采用分布式rest服务方式共用一个service层。缺点:系统之间交互要使用远程通信,接口开发增大工作量,但利大于弊。微服务:可单独部署运行的微小服务,一个服务只完成单一功能分散能力,服务之间通过RPC等交互,至少有一个数据库。用户量过大高并发时,建议将应用拆解为多个子系统,各自隔离,独立负责功能。缺点:服务数量大,后期运维较难。分布式、微服务区别:分布式依赖整体组合,是系统的部署方式;微服务是架构设计方式,粒度更小,服务之间耦合度更低。独立小团队负责,敏捷性更高。集群:多台服务器复制部署相同应用,由负载均衡共同对外提供服务,逻辑功能仍是单体应用。项目如果跑在一台机器上,这台机器如果出现故障,或者用户请求量比较高一台机器支撑不住,网站可能就访问不了。那怎么解决呢?就需要使用多台机器,复制部署一样的程序,让几个机器同时运行网站。那怎么分发请求到所有机器上?所以负载均衡的概念就出现了。负载均衡:将请求分发以分摊服务器压力。基于反向代理能将所有的请求根据指定的策略算法,分发到不同的服务器上。实现负载均衡常用Nginx、LVS。负载均衡服务器出现问题了怎么办?所有冗余的概念就出现了。冗余:两台或多台服务器,一个主服务器,一个从服务器。假设一个主服务器的负载均衡服务器出现问题,从服务器能替代主服务器来继续负载均衡。实现的方式就是使用Keepalive来抢占虚拟主机。双机双工模式:目前Cluster(集群)的一种形式,两台服务器均为活动状态,同时运行相同的应用,保证整体的性能,也实现了负载均衡和互为备份。WEB服务器或FTP服务器等用此种方式比较多。实现多台服务器代码(文件)同步方案:1、负载均衡中实现代码同步rsync。2、rsync+inotify逐一文件监听并实时同步。3、实现redis共享session。Dryad:MapReduce之外的新思路 目前各大软件巨头都搭建了自己的分布式平台解决方案,主要包括Dryad,DynamoSDMapReduce等框架。2010年12月21日,微软发布了Dryad的测试版本,成为谷歌MapReduce分布式并行计算平台的竞争对手。Dryad是微软构建云计算基础设施的重要核心技术之一,它可以让开发人员在Windows或者,NET平台上编写大规模的并行应用程序模型,并能够让在单机上编写的程序运行在分布式并行计算平台上。工程师可以利用数据中心的服务器集群对数据进行并行处理,当工程师在 *** 作数千台计算机时,无需关心分布式并行计算系统方面的细节。DryadgDDryadLINO是微软硅谷研究院创建的研究项目,主要用来提供一个分布式并行计算平台。DryadLINO是分布式计算语言,能够将LINQ编写的程序转变为能够在Dryad上运行的程序,使普通程序员也可以轻易进行大规模的分布式计算。它结合了微软Dryad和LINO两种关键技术,被用于在该平台上构建应用。Dryad构建在Cluster Service(集群服务)和分布式文件系统之上,可以处理任务的创建和管理、资源管理,任务监控和可视化、容错,重新执行和调度等工作。
Dryad同MapReduce样,它不仅仅是种编程模型,同时也是一种高效的任务调度模型。Dryad这种编程模型不仅适用于云计算,在多核和多处理器以及异构机群上同样有良好的性能。在VisualStudio 2010 C++有一套并行计算编程框架,支持常用的协同任务调度和硬件资源(例如CPU和内存等)管理,通过WorkStealing算法可以充分利用细颗粒度并行的优势,来保证空闲的线程依照一定的策略建模,从所有线程队列中“偷取”任务执行,所以能够让任务和数据粒度并行。Dryad与上述并行框架相似,同样可以对计算机和它们的CPU进行调度,不同的是Dryad被设计为伸缩于各种规模的集群计算平台,无论是单台多核计算机还是由多台计算机组成的集群,甚至拥有数千台计算机的数据中心,都能以从任务队列中创建的策略建模来实现分布式并行计算的编程框架。
Dryad系统架构
Dryad系统主要用来构建支持有向无环图(Directed Acycline Graph,DAG)类型数据流的并行程序,然后根据程序的要求进行任务调度,自动完成任务在各个节点上的运行。在Dryad平台上,每个任务或并行计算过程都可以被表示为一个有向无环图,图中的每个节点表示一个要执行的程序,节点之间的边表示数据通道中数据的传输方式,其可能是文件、TCPPipe、共享内存
用Dryad平台时,首先需要在任务管理(JM)节点上建立自己的任务,每一个任务由一些处理过程以及在这些处理过程问的数据传递组成。任务管理器(JM)获取无环图之后,便会在程序的输入通道准备,当有可用机器的时候便对它进行调度。JM从命名服务器(NS)那里获得一个可用的计算机列表,并通过一个维护进程(PD)来调度这个程序。
Dryad的执行过程可以看做是一个二维管道流的处理过程,其中每个节点可以具有多个程序的执行,通过这种算法可以同时处理大规模数据。在每个节点进程(VerticesProcesses)上都有一个处理程序在运行,并且通过数据管道(Channels)的方式在它们之间传送数据。二维的Dryad管道模型定义了一系列的 *** 作,可以用来动态地建立并且改变这个有向无环图。这些 *** 作包括建立新的节点,在节点之间加入边,合并两个图以及对任务的输入和输出进行处理等。
Dryad模型算法应用
DryadLINQ可以根据工程师给出的LINQ查询生成可以在Dryad引擎上执行的分布式策略算法建模(运算规则),并负责任务的自动并行处理及数据传递时所需要的序列化等 *** 作。此外,它还提供了一系列易于使用的高级特性,如强类型数据、Visual Studio集成调试以及丰富的任务优化策略(规则)算法等。这种模型策略开发框架也比较适合采用领域驱动开发设计(DDD)来构建“云”平台应用,并能够较容易地做到自动化分布式计算。
我们经常会遇到网站或系统无法承载大规模用户并发访问的问题,解决该问题的传统方法是使用数据库,通过数据库所提供的访问 *** 作接口来保证处理复杂查询的能力。当访问量增大,单数据库处理不过来时便增加数据库服务器。如果增加了三台服务器,再把用户分成了三类A(学生)、B(老师),C(工程师)。每次访问时先查看用户属于哪一类,然后直接访问存储那类用户数据的数据库,则可将处理能力增加三倍,这时我们已经实现了一个分布式的存储引擎过程。
我们可以通过Dryad分布式平台来解决云存储扩容困难的问题。如果这三台服务器也承载不了更大的数据要求,需要增加到五台服务器,那必须更改分类方法把用户分成五类,然后重新迁移已经存在的数据,这时候就需要非常大的迁移工作,这种方法显然不可取。另外,当群集服务器进行分布式计算时,每个资源节点处理能力可能有所不同(例如采用不同硬件配置的服务器),如果只是简单地把机器直接分布上去,性能高的机器得不到充分利用,性能低的机器处理不过来。
Dryad解决此问题的方法是采用虚节点,把上面的A、B、C三类用户都想象成一个逻辑上的节点。一台真实的物理节点可能会包含一个或者几个虚节点(逻辑节点),看机器的性能而定。我们可以把那任务程序分成Q等份(每一个等份就是一个虚节点),这个Q要远大于我们的资源数。现在假设我们有S个资源,那么每个资源就承担Q/S个等份。当一个资源节点离开系统时,它所负责的等份要重新均分到其他资源节点上;当一个新节点加入时,要从其他的节点1偷取2一定数额的等份。
在这个策略建模算法下,当一个节点离开系统时,虽然需要影响到很多节点,但是迁移的数据总量只是离开那个节点的数据量。同样,~个新节点的加入,迁移的数据总量也只是一个新节点的数据量。之所以有这个效果是因为Q的存在,使得增加和减少节点的时候不需要对已有的数据做重新哈希(D)。这个策略的要求是Q>>s(存储备份上,假设每个数据存储N个备份则要满足Q>>SN)。如果业务快速发展,使得不断地增加主机,从而导致Q不再满足Q>>S,那么这个策略将重新变化。
Dryad算法模型就是一种简化并行计算的编程模型,它向上层用户提供接口,屏蔽了并行计算特别是分布式处理的诸多细节问题,让那些没有多少并行计算经验的开发 人员也可以很方便地开发并行应用,避免了很多重复工作。这也就是Dryad算法模型的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛,并且能大大减轻了工程师在开发大规模数据应用时的负担。
通过上述的论述,我们可以看到Dryad通过一个有向无环图的策略建模算法,提供给用户一个比较清晰的编程框架。在这个编程框架下,用户需要将自己的应用程序表达为有向无环图的形式,节点程序则编写为串行程序的形式,而后用Dryad方法将程序组织起来。用户不需要考虑分布式系统中关于节点的选择,节点与通信的出错处理手段都简单明确,内建在Dryad框架内部,满足了分布式程序的可扩展性、可靠性和对性能的要求。
使用Drvad LINO
通过使用DryadLINQ编程,使工程师编写大型数据并行程序能够轻易地运行在大型计算机集群里。DryadLINO开发的程序是一组顺序的L_NQ代码,它们可以针对数据集做任何无副作用的 *** 作,编译器会自动将其中数据并行的部分翻译成并行执行的计划,并交由底层的Dryad平台完成计算,从而生成每个节点要执行的代码和静态数据,并为所需要传输的数据类型生成序列化代码;
LINQ本身是,NET引入的组编程结构,它用于像 *** 作数据库中的表一样来 *** 作内存中的数据集合。DryadLINQ提供的是一种通用的开发/运行支持,而不包含任何与实际业务,算法相关的逻辑,Dryad和DryadLINQ都提供有API。DryadLINQ使用和LINQ相同的编程模型,并扩展了少量 *** 作符和数据类型以适用于数据并行的分布式计算。并从两方面扩展了以前的计算模型(SQL,MapReduce,Dryad等)它是基于,NET强类型对象的,表达力更强的数据模型和支持通用的命令式和声明式编程(混合编程),从而延续了LINQ代码即数据(treat codeas data)的特性。
DryadLINQ使用动态的代码生成器,将DryadLINQ表达式编译成,NET字节码。这些编译后的字节码会根据调度执行的需要,被传输到执行它的机器上去。字节码中包含两类代码完成某个子表达式计算的代码和完成输入输出序列化的代码。这种表达式并不会被立刻计算,而是等到需要其结果的时候才进行计算。DryadLINQ设计的核心是在分布式执行层采用了一种完全函数式的,声明式的表述,用于表达数据并行计算中的计算。这种设计使得我们可以对计算进行复杂的重写和优化,类似于传统的并行数据库。从而解决了传统分布式数据库SQL语句功能受限与类型系统受限问题,以及MapReduce模型中的计算模型受限和没有系统级的自动优化等问题。
在Dryad编程模式中,应用程序的大规模数据处理被分解为多个步骤,并构成有向无环图形式的任务组织,由执行引擎去执行。这两种模式都提供了简单明了的编程方式,使得工程师能够很好地驾驭云计算处理平台,对大规模数据进行处理。Dryad的编程方式可适应的应用也更加广泛,通过DryadLINQ所提供的高级语言接口,使工程师可以快速进行大规模的分布式计算应用程序的编写。
Dryad技术的应用
云计算最重要的概念之~就是可伸缩性,实现它的关键是虚拟化。通过虚拟化可以在一台共享计算机上聚集多个 *** 作系统和应用程序,以便更好地利用服务器。当一个服务器负载超荷时,可以将其中一个 *** 作系统的一个实例(以及它的应用程序)迁移到一个新的,相对闲置的服务器上。虚拟化(Virtualization)是云计算的基石,企业实现私有云的第一步就是服务器基础架构进行虚拟化。基础设施虚拟化之后。接下来就是要将现有应用迁移到虚拟环境中。
Dryad结合Hyper-V(Windows Server 2008的一个关键组成部分)虚拟化技术。可以实现TB级别数据的在线迁移。中小型企业也可以针对企业内部小型集群服务器进行分布式应用系统编程,以及制定私有云开发与应用解决方案等设计。Windows Azure是微软的公有云解决方案,但是目前要大规模应用还为时过早。使用现有Windows第三方产品实现私有云,花费成本却很大。然而Dryad技术给我们带来了不错的折中选择,当我们基于Windows Server台运行应用系统或者网站时,便可以基于Dryad分布式架构来开发与设计实现。当公有云时机成熟和各种条件完备时,系统可以很轻易地升级到公有云,企业而无需花费太多成本。
写在最后
云计算可以看成是网络计算与虚拟化技术的结合,利用网络的分布式计算能力将各种IT资源筑成一个资源池,然后结合成熟的存储虚拟化和服务虚拟化技术,让用户实时透明地监控和调配资源。Dryad是实现构建微软云计算基础设施的重要核心技术之一,其具有诸多优点,如DryadLINQ具有声明式编程并将 *** 作的对象封装为,NET类数据,方便数据 *** 作,自动并行化、VisualStudio IDE和,NET类库集成,自动序列化和任务图的优化(静态和动态(主要通过DryadAPI实现)),对J0in进行了优化,得到了比BigTable+MapReduee更快的Join速率和更易用的数据 *** 作方式等。
不过,Dryad和DryadLINQ也同样具有局限性。其一,它更适用于批处理任务,而不适用于需要快速响应的任务;这个数据模型更适用于处理流式访问,而不是随机访问。其二,DryadLINQ使用的是,NET的LINO查询语言模型,针对运行Windows HPC Server的计算机集群设计,而目前高性能计算市场被Einux所占领。此外,和MapReduce的应用时间和实践相比,Dryad的可靠性还明显不足,据了解除了微软AdCenter中的数据分析和Trident项目之外,其它应用Dryad的地方还很少。不过总的来看,Dryad平台在将来仍具有很广泛的发展前景,尤其对NET开发人员来说是―次很重要的技术革新机遇。
名词解释
任务管理器(Job Manager,JM):每个Job的执行被一个Job Manager控制,该组件负责实例化这个Job的工作图,在计算机群上调度节点的执行;监控各个节点的执行情况并收集一些信息,通过重新执行来提供容错:根据用户配置的策略动态地调整工作图。
计算机群(Cluster):用于执行工作图中的节点。
命名服务器(Name Server,Ns):负责维护cluster中各个机器的信息。
维护进程(PDaemon,PD):进程监管与调度工作。浪潮的多节点服务器可以解决关于分布式存储的问题,像浪潮的英信服务器i48M6,就是一款专为全新高密度数据中心应用优化设计的多节点模块化服务器,它的扩展能力更高,可以解决海量存储问题。集群强调高可用,分布式强调多业务协作
物理与逻辑
集群倾向于物理概念,即多台机器组成一个集群。这多台机器是否有合作关系并不能保证,比如我们会说我们公司的一个规模为1000台机器的物理集群部署在昌平,但是这1000台机器可能是给公司内不同的平台提供服务,但是从物理角度,由于都部署在一起,在同一个机房,就可以称之为集群。
分布式倾向于逻辑概念,即多个节点或程序为了一个共同的目标,部署在一个或者多个物理机器上。举个例子,一台物理机上装了一个Nginx,它连接的两个Tomcat也在这台物理机上,但是这个Nginx代表的服务,就可以称之为分布式。当然,为了安全性,稳定性等原因,我们并不建议把分布式部署在一个物理节点上。
发自简书App
冗余与分解
集群除了可以用来表示多个物理机器,还可以表示一种“冗余”的理念,即通过部署多个同样功能的节点,来实现扩展性与可用性的提升。举个例子,通过在不同节点上部署两个同样功能的server,来这样就算其中一个节点宕机,也能保证服务的可用性。而扩展性,比如一个server的qps可用承担到2000,但是随着用户群体的增加,qps需要达到3000,那么我们就可以通过增加一个Tomcat节点的方式来实现扩容。
分布式的分解与微服务的概念有点相近,即把一个系统的功能分布在不同节点上,每个节点都承担了不同的责任,这样分模块部署最主要的优势是业务隔离,即个别功能的问题或者改进不会影响其他模块,这样就算个别模块挂掉,其他模块也能够继续运作。举个例子,前些年春晚抢红包的时候,曾经由于瞬时间请求量太大导致把微信和支付宝给弄瘫痪了,但是大家都知道,瘫痪的只是红包部分的功能,微信的信息功能并不受影响,这就是分布式的好处。需要。宁夏银川市分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统,是需要指标才能发送的。银川市是宁夏回族自治区辖地级市、首府,国务院批复确定的中国西北地区重要的中心城市。1、分布式集群服务器方便我们的维护和开发,一方面可以解决和改善我们系统的并发问题,另一方面可以解决我们服务器如果出现一定数量的宕机后,系统仍然可以正常运转。
2、独立的集成服务器当面对不断增加的性能需求,虚拟主机显得力不从心,在共享环境中,空间资源和带宽资源都是受到共享用户的使用量限制的。所以现代企业使用分布式集群服务器而不是独立的集成服务器。
很多组织机构慢慢的在不同的服务器和地点部署SQLServer数据库——为各种应用和目的——开始考虑通过SQLServer集群的方式来合并。
将SQLServer实例和数据库合并到一个中心的地点可以减低成本,尤其是维护和软硬件许可证。此外,在合并之后,可以减低所需机器的数量,这些机器就可以用于备用。
当寻找一个备用,比如高可用性的环境,企业常常决定部署Microsoft的集群架构。我常常被问到小的集群(由较少的节点组成)SQLServer实例和作为中心解决方案的大的集群哪一种更好。在我们比较了这两个集群架构之后,我让你们自己做决定。
什么是Microsoft集群服务器
MSCS是一个WindowsServer企业版中的内建功能。这个软件支持两个或者更多服务器节点连接起来形成一个“集群”,来获得更高的可用性和对数据和应用更简便的管理。MSCS可以自动的检查到服务器或者应用的失效,并从中恢复。你也可以使用它来(手动)移动服务器之间的负载来平衡利用率以及无需停机时间来调度计划中的维护任务。
这种集群设计使用软件“心跳”来检测应用或者服务器的失效。在服务器失效的事件中,它会自动将资源(比如磁盘和IP地址)的所有权从失效的服务器转移到活动的服务器。注意还有方法可以保持心跳连接的更高的可用性,比如站点全面失效的情况下。
MSCS不要求在客户计算机上安装任何特殊软件,因此用户在灾难恢复的经历依赖于客户-服务器应用中客户一方的本质。客户的重新连接常常是透明的,因为MSCS在相同的IP地址上重启应用、文件共享等等。进一步,为了灾难恢复,集群的节点可以处于分离的、遥远的地点。
在集群服务器上的SQLServer
SQLServer2000可以配置为最多4个节点的集群,而SQLServer2005可以配置为最多8个节点的集群。当一个SQLServer实例被配置为集群之后,它的磁盘资源、IP地址和服务就形成了集群组来实现灾难恢复。
SQLServer2000允许在一个集群上安装16个实例。根据在线帮助,“SQLServer2005在一个服务器或者处理器上可以支持最多50个SQLServer实例,”但是,“只能使用25个硬盘驱动器符,因此如果你需要更多的实例,那么需要预先规划。”
注意SQLServer实例的灾难恢复阶段是指SQLServer服务开始所需要的时间,这可能从几秒钟到几分钟。如果你需要更高的可用性,考虑使用其他的方法,比如logshipping和数据库镜像。
单个的大的SQLServer集群还是小的集群
下面是大的、由更多的节点组成的集群的优点:
◆更高的可用新(更多的节点来灾难恢复)。
◆更多的负载均衡选择(更多的节点)。
◆更低廉的维护成本。
◆增长的敏捷性。多达4个或者8个节点,依赖于SQL版本。
◆增强的管理性和简化环境(需要管理的少了)。
◆更少的停机时间(灾难恢复更多的选择)。
◆灾难恢复性能不受集群中的节点数目影响。
下面是单个大的集群的缺点:
◆集群节点数目有限(如果需要第9个节点怎么办)。
◆在集群中SQL实例数目有限。
◆没有对失效的防护——如果磁盘阵列失效了,就不会发生灾难恢复。
◆使用灾难恢复集群,无法在数据库级别或者数据库对象级别,比如表,创建灾难恢复集群。
虚拟化和集群
虚拟机也可以参与到集群中,虚拟和物理机器可以集群在一起,不会发生问题。SQLServer实例可以在虚拟机上,但是性能可能会受用影响,这依赖于实例所消耗的资源。在虚拟机上安装SQLServer实例之前,你需要进行压力测试来验证它是否可以承受必要的负载。
在这种灵活的架构中,如果虚拟机和物理机器集群在一起,你可以在虚拟机和物理机器之间对SQLServer进行负载均衡。比如,使用虚拟机上的SQLServer实例开发应用。然后在你需要对开发实例进行压力测试的时候,将它灾难恢复到集群中更强的物理机器上。
集群服务器可以用于SQLServer的高可用性、灾难恢复、可扩展性和负载均衡。单个更大的、由更多的节点组成的集群往往比小的、只有少数节点的集群更好。大个集群允许更灵活环境,为了负载均衡和维护,实例可以从一个节点移动到另外的节点。
服务器集群:服务器集群就是指将很多服务器集中起来一起进行同一种服务,在客户端看来就像是只有一个服务器。集群可以利用多个计算机进行并行计算从而获得很高的计算速度,也可以用多个计算机做备份,从而使得任何一个机器坏了整个系统还是能正常运行。
服务器负载均衡:
负载均衡
(Load
Balancing)
建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
分布式服务器:
所谓分布式资源共享服务器就是指数据和程序可以不位于一个服务器上,而是分散到多个服务器,以网络上分散分布的地理信息数据及受其影响的数据库 *** 作为研究对象的一种理论计算模型服务器形式。分布式有利于任务在整个计算机系统上进行分配与优化,克服了传统集中式系统会导致中心主机资源紧张与响应瓶颈的缺陷,解决了网络GIS
中存在的数据异构、数据共享、运算复杂等问题,是地理信息系统技术的一大进步。
这个三种架构都是常见的服务器架构,集群的主要是IT公司在做,可以保障重要数据安全;负载均衡主要是为了分担访问量,避免临时的网络堵塞,主要用于电子商务类型的网站;分布式服务器主要是解决跨区域,多个单个节点达到高速访问的目前,一般是类似CDN的用途的话,会采用分布式服务器。
纯手工打字,希望可以帮的到你!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)