经常看到电脑CPU超频什么的,什么是超频?在哪里调它的频率啊

经常看到电脑CPU超频什么的,什么是超频?在哪里调它的频率啊,第1张

一、什么是超频
超频是使得各种各样的电脑部件运行在高于额定速度下的方法。例如,如果你购买了一颗Pentium432GHz处理器,并且想要它运行得更快,那就可以超频处理器以让它运行在36GHz下。
郑重声明!
警告:超频可能会使部件报废。超频有风险,如果超频的话整台电脑的寿命可能会缩短。如果你尝试超频的话,我将不对因为使用这篇指南而造成的任何损坏负责。这篇指南只是为那些大体上接受这篇超频指南/FAQ以及超频的可能后果的人准备的。
为什么想要超频?是的,最明显的动机就是能够从处理器中获得比付出更多的回报。你可以购买一颗相对便宜的处理器,并把它超频到运行在贵得多的处理器的速度下。如果愿意投入时间和努力的话,超频能够省下大量的金钱;如果你是一个象我一样的狂热玩家的话,超频能够带给你比可能从商店买到的更快的处理器。
二、超频的危险
首先我要说,如果你很小心并且知道要做什么的话,那对你来说,通过超频要对计算机造成任何永久性损伤都是非常困难的。如果把系统超得太过的话,会烧毁电脑或无法启动。但仅仅把它推向极限是很难烧毁系统的然而仍有危险。第一个也是最常见的危险就是发热。在让电脑部件高于额定参数运行的时候,它将产生更多的热量。如果没有充分散热的话,系统就有可能过热。不过一般的过热是不能摧毁电脑的。由于过热而使电脑报废的唯一情形就是再三尝试让电脑运行在高于推荐的温度下。就我说,应该设法抑制在60C以下。
不过无需过度担心过热问题。在系统崩溃前会有征兆。随机重启是最常见的征兆了。过热也很容易通过热传感器的使用来预防,它能够显示系统运行的温度。如果你看到温度太高的话,要么在更低的速度下运行系统,要么采用更好的散热。稍后我将在这篇指南中讨论散热。
超频的另一个“危险”是它可能减少部件的寿命。在对部件施加更高的电压时,它的寿命会减少。小小的提升不会造成太大的影响,但如果打算进行大幅超频的话,就应该注意寿命的缩短了。然而这通常不是问题,因为任何超频的人都不太可能会使用同一个部件达四、五年之久,并且也不可能说任何部件只要加压就不能撑上4-5年。大多数处理器都是设计为最高使用10年的,所以在超频者的脑海中,损失一些年头来换取性能的增加通常是值得的。
基础知识
为了了解怎样超频系统,首先必须懂得系统是怎样工作的。用来超频最常见的部件就是处理器了。
在购买处理器或CPU的时候,会看到它的运行速度。例如,Pentium432GHzCPU运行在3200MHz下。这是对一秒钟内处理器经历了多少个时钟周期的度量。一个时钟周期就是一段时间,在这段时间内处理器能够执行给定数量的指令。所以在逻辑上,处理器在一秒内能完成的时钟周期越多,它就能够越快地处理信息,而且系统就会运行得越快。1MHz是每秒一百万个时钟周期,所以32GHz的处理器在每秒内能够经历3,200,000,000或是3十亿200百万个时钟周期。相当了不起,对吗?
超频的目的是提高处理器的GHz等级,以便它每秒钟能够经历更多的时钟周期。计算处理器速度的公式是这个:FSB(以MHz为单位)×倍频=速度(以MHz为单位)。现在来解释FSB和倍频是什么:
FSB(对AMD处理器来说是HTT),或前端总线,就是整个系统与CPU通信的通道。所以,FSB能运行得越快,显然整个系统就能运行得越快。
CPU厂商已经找到了增加CPU的FSB有效速度的方法。他们只是在每个时钟周期中发送了更多的指令。所以CPU厂商已经有每个时钟周期发送两条指令的办法(AMDCPU),或甚至是每个时钟周期四条指令(IntelCPU),而不是每个时钟周期发送一条指令。那么在考虑CPU和看FSB速度的时候,必须认识到它不是真正地在那个速度下运行。
Intel CPU是“四芯的”,也就是它们每个时钟周期发送4条指令。这意味着如果看到800MHz的FSB,潜在的FSB速度其实只有200MHz,但它每个时钟周期发送4条指令,所以达到了800MHz的有效速度。相同的逻辑也适用于AMDCPU,不过它们只是“二芯的”,意味着它们每个时钟周期只发送2条指令。所以在AMDCPU上400MHz的FSB是由潜在的200MHzFSB每个时钟周期发送2条指令组成的。
这是重要的,因为在超频的时候将要处理CPU真正的FSB速度,而不是有效CPU速度。
速度等式的倍频部分也就是一个数字,乘上FSB速度就给出了处理器的总速度。例如,如果有一颗具有200MHzFSB(在乘二或乘四之前的真正FSB速度)和10倍频的CPU,那么等式变成:(FSB)200MHz×(倍频)10=2000MHz CPU速度,或是20GHz。
在某些CPU上,例如Intel自1998年以来的处理器,倍频是锁定不能改变的。在有些上,例如AMDAthlon64处理器,倍频是“封顶锁定”的,也就是可以改变倍频到更低的数字,但不能提高到比最初的更高。在其它的CPU上,倍频是完全放开的,意味着能够把它改成任何想要的数字。这种类型的CPU是超频极品,因为可以简单地通过提高倍频来超频CPU,但现在非常罕见了。在CPU上提高或降低倍频比FSB容易得多了。这是因为倍频和FSB不同,它只影响CPU速度。改变FSB时,实际上是在改变每个单独的电脑部件与CPU通信的速度。这是在超频系统的所有其它部件了。这在其它不打算超频的部件被超得太高而无法工作时,可能带来各种各样的问题。不过一旦了解了超频是怎样发生的,就会懂得如何去防止这些问题了。
在AMDAthlon64CPU上,术语FSB实在是用词不当。本质上并没有FSB。FSB被整合进了芯片。这使得FSB与CPU的通信比Intel的标准FSB方法快得多。它还可能引起一些混乱,因为Athlon64上的FSB有时可能被说成HTT。如果看到某些人在谈论提高Athlon64CPU上的HTT,并且正在讨论认可为普通FSB速度的速度,那么就把HTT当作FSB来考虑。在很大程度上,它们以相同的方式运行并且能够被视为同样的事物,而把HTT当作FSB来考虑能够消除一些可能发生的混淆。
三、怎样超频
那么现在了解了处理器怎样到达它的额定速度了。非常好,但怎样提高这个速度呢?
超频最常见的方法是通过BIOS。在系统启动时按下特定的键就能进入BIOS了。用来进入BIOS最普通的键是Delete键,但有些可能会使用象F1,F2,其它F按钮,Enter和另外什么的键。在系统开始载入Windows(任何使用的OS)之前,应该会有一个屏幕在底部显示要使用什么键的。
假定BIOS支持超频,那一旦进到BIOS,应该可以使用超频系统所需要的全部设置。最可能被调整的设置有:
倍频,FSB,RAM延时,RAM速度及RAM比率。
在最基本的水平上,你唯一要设法做到的就是获得你所能达到的最高FSB×倍频公式。完成这个最简单的办法是提高倍频,但那在大多数处理器上无法实现,因为倍频被锁死了。其次的方法就是提高FSB。这是相当具局限性的,所有在提高FSB时必须处理的RAM问题都将在下面说明。一旦找到了CPU的速度极限,就有了不只一个的选择了。
如果你实在想要把系统推到极限的话,为了把FSB升得更高就可以降低倍频。要明白这一点,想象一下拥有一颗20GHz的处理器,它采用200MHzFSB和10倍频。那么200MHz×10=20GHz。显然这个等式起作用,但还有其它办法来获得20GHz。可以把倍频提高到20而把FSB降到100MHz,或者可以把FSB升到250MHz而把倍频降低到8。这两个组合都将提供相同的20GHz。那么是不是两个组合都应该提供相同的系统性能呢?
不是的。因为FSB是系统用来与处理器通信的通道,应该让它尽可能地高。所以如果把FSB降到100MHz而把倍频提高到20的话,仍然会拥有20GHz的时钟速度,但系统的其余部分与处理器通信将会比以前慢得多,导致系统性能的损失。
在理想情况下,为了尽可能高地提高FSB就应该降低倍频。原则上,这听起来很简单,但在包括系统其它部分时会变得复杂,因为系统的其它部分也是由FSB决定的,首要的就是RAM。这也是我在下一节要讨论的。
大多数的零售电脑厂商使用不支持超频的主板和BIOS。你将不能从BIOS访问所需要的设置。有工具允许从Windows系统进行超频,但我不推荐使用它们,因为我从未亲自试验过。
RAM及它对超频的影响
如我之前所说的,FSB是系统与CPU通信的路径。所以提高FSB也有效地超频了系统的其余部件。受提高FSB影响最大的部件就是RAM。在购买RAM时,它是被设定在某个速度下的。我将使用表格来显示这些速度:
PC-2100-DDR266
PC-2700-DDR333
PC-3200-DDR400
PC-3500-DDR434
PC-3700-DDR464
PC-4000-DDR500
PC-4200-DDR525
PC-4400-DDR550
PC-4800-DDR600
要了解这个,就必须首先懂得RAM是怎样工作的。RAM(RandomAccessMemory,随机存取存储器)被用作CPU需要快速存取的文件的临时存储。例如,在载入游戏中平面的时候,CPU会把平面载入到RAM以便它能在任何需要的时候快速地访问信息,而不是从相对慢的硬盘载入信息。
要知道的重要一点就是RAM运行在某个速度下,那比CPU速度低得多。今天,大多数RAM运行在133MHz至300MHz之间的速度下。这可能会让人迷惑,因为那些速度没有被列在我的图表上。
这是因为RAM厂商仿效了CPU厂商的做法,设法让RAM在每个RAM时钟周期发送两倍的信息。这就是在RAM速度等级中DDR的由来。它代表了DoubleDataRate(两倍数据速度)。所以DDR400意味着RAM在400MHz的有效速度下运转,DDR400中的400代表了时钟速度。因为它每个时钟周期发送两次指令,那就意味着它真正的工作频率是200MHz。这很像AMD的“二芯”FSB。
那么回到RAM上来。之前有列出DDRPC-4000的速度。PC-4000等价于DDR500,那意味着PC-4000的RAM具有500MHz的有效速度和潜在的250MHz时钟速度。如我之前所说的,在提高FSB的时候,就有效地超频了系统中的其它所有东西。这也包括RAM。额定在PC-3200(DDR400)的RAM是运行在最高200MHz的速度下的。对于不超频的人来说,这是足够的,因为FSB无论如何不会超过200MHz。
不过在想要把FSB升到超过200MHz的速度时,问题就出现了。因为RAM只额定运行在最高200MHz的速度下,提高FSB到高于200MHz可能会引起系统崩溃。这怎样解决呢?有三个解决办法:使用FSB:RAM比率,超频RAM或是购买额定在更高速度下的RAM。
因为你可能只了解那三个选择中的最后一个,所以我将来解释它们:
FSB:RAM比率:如果你想要把FSB提高到比RAM支持的更高的速度,可以选择让RAM运行在比FSB更低的速度下。这使用FSB:RAM比率来完成。基本上,FSB:RAM比例允许选择数字以在FSB和RAM速度之间设立一个比率。假设你正在使用的是PC-3200(DDR400)RAM,我之前提到过它运行在200MHz下。但你想要提高FSB到250MHz来超频CPU。很明显,RAM将不支持升高的FSB速度并很可能会引起系统崩溃。为了解决这个,可以设立5:4的FSB:RAM比率。基本上这个比率就意味着如果FSB运行在5MHz下,那么RAM将只运行在4MHz下。
更简单来说,把5:4的比率改成100:80比率。那么对于FSB运行在100MHz下,RAM将只运行在80MHz下。基本上这意味着RAM将只运行在FSB速度的80%下。那么至于250MHz的目标FSB,运行在5:4的FSB:RAM比率中,RAM将运行在200MHz下,那是250MHz的80%。这是完美的,因为RAM被额定在200MHz。
然而,这个解决办法不理想。以一个比率运行FSB和RAM导致了FSB与RAM通信之间的时间差。这引起减速,而如果RAM与FSB运行在相同速度下的话是不会出现的。如果想要获得系统的最大速度的话,使用FSB:RAM比率不会是最佳方案。
四、电压及它怎样影响超频:
在超频时有一个极点,不论怎么做或拥有多好的散热都不能再增加CPU的速度了。这很可能是因为CPU没有获得足够的电压。跟前面提到的内存电压情况十分相似。为了解决这个问题,只要提高CPU电压,也就是vcore就行了。以在RAM那节中描述的相同方式来完成这个。一旦拥有使CPU稳定的足够电压,就可以要么让CPU保存在那个速度下,要么尝试进一步超频它。跟处理RAM一样,小心不要让CPU电压过载。每个处理器都有厂家推荐的电压设置。在网站上找到它们。设法不要超过推荐的电压。
紧记提高CPU电压将引起大得多的发热量。这就是为什么在超频时要有好的散热的本质原因。那引导出下一个主题。
散热:
如我之前所说的,在提高CPU电压时,发热量大幅增长。这必需要适当的散热。基本上有三个“级别”的机箱散热:风冷(风扇),水冷,Peltier/相变散热(非常昂贵和高端的散热)。
我对Peltier/相变散热方法实在没有太多的了解,所以我不准备说它。你唯一需要知道的就是它会花费1000美元以上,并且能够让CPU保持在零下的温度。它是供非常高端的超频者使用的,我想在这里没人会用它吧。然而,另外两个要便宜和现实得多。
每个人都知道风冷。如果你现在正在电脑前面的话,你可能听到从它传出持续的嗡嗡声。如果从后面看进去,就会看到一个风扇。这个风扇基本上就是风冷的全部了:使用风扇来吸取冷空气并排出热空气。有各种各样的方法来安装风扇,但通常应该有相等数量的空气被吸入和排出。水冷比风冷更昂贵和奇异。它基本上是使用抽水机和水箱来给系统散热的,比风冷更有效。
那些就是两个最普遍使用的机箱散热方法。然而,好的机箱散热对一部清凉的电脑来说并不是唯一必需的部件。其它主要的部件有CPU散热片/风扇,或者说是HSF。HSF的目的是把来自CPU的热量引导出来并进入机箱,以便它能被机箱风扇排出。在CPU上一直有一个HSF是必要的。如果有几秒钟没有它,CPU可能就会烧毁。
五、如果电脑无显示了(开机无显示),该怎么办?
这取决于你拥有的主板。“失败恢复”方案是用来重置CMOS的,通常通过跳线放电完成。在主板手册中查找细节。如果超频太高但BIOS设置保持完整无缺的话,新近的大多数发烧级主板有一个选项用来在降低的频率下进行显示,那么你可以进入BIOS并调低到稳定运行的时钟速度。
在某些主板上,这通过在打开电脑时按住Insert键来完成(通常必须是PS/2键盘)。如果电脑经过之前的努力仍不显示的话,有些会自动降低频率。有时电脑不会冷启动(在按下电源按钮时显示)但在保持一会儿后会运行,那就重启。在其它场合电脑会很好地冷启动,但不能热启动(重启)。那些都是不稳定的迹象,但如果你对这个稳定性感到满意并能够处理这个问题的话,那么它通常不会引起大的问题。
六、什么限制了超频?
通常RAM和CPU是唯一重要的限制因素,特别是在AMD系统中由于内存异步运行而固有的问题(参见下面的FSB章节)。RAM不得不运行在跟FSB相同的速度或是它的分频频率下。内存可以运行在比FSB高的速度下,而不仅仅是低于它。不过有了运行更高延时/更高内存电压的选择,它变得越来越不像限制因素了,特别是因为新的平台(P4和A64)从异步运行中承受了更少的性能损失。
CPU已经变成了主要的限制因素。唯一处理无法运行得更快的CPU的方法就是加电压,不过超过最大核心电压会缩短芯片的寿命(虽然超频也会这样),但充分的散热部分解决了这个问题。
伴随着使用太高核心电压的另一个问题在P4平台上以SNDS,或者说是SuddenNorthwoodDeathSyndrome(突发性死亡综合症)的形式出现,使用高于17v的任何电压会导致处理器迅速而过早的报废,就算采用相变散热也不行。然而,新的C核心芯片,即EE芯片,及Prescott芯片没有这个问题,至少范围不同。散热也能妨碍超频,因为太高的温度会导致不稳定。但如果系统是稳定的话,那么温度通常不会太高。
七、现在已经超频很多了,该做什么?
如果你想的话就运行一些基准测试。让Prime95(或是你选择强调的测试-完全视你而定)运行充分长的时间(通常24小时无故障就被认为系统是稳定的了)。
八、什么是FSB?
FSB(或是FrontSideBus,前端总线)是超频最容易和最常见的方法之一。FSB是CPU与系统其它部分连接的速度。它还影响内存时钟,那是内存运行的速度。一般而言,对FSB和内存时钟两者来说越高等于越好。然而,在某些情况下这不成立。例如,让内存时钟比FSB运行得快根本不会有真正的帮助。同样,在AthlonXP系统上,让FSB运行在更高速度下而强制内存与FSB不同步(使用稍后将讨论的内存分频器)对性能的阻碍将比运行在较低FSB及同步内存下要严重得多。
FSB在Athlon和P4系统上涉及到不同的方法。在Athlon这边,它是DDR总线,意味着如果实际时钟是200MHz的话,那就是运行在400MHz下。在P4上,它是“四芯的”,所以如果实际时钟是相同的200MHz的话,就代表800MHz。这是Intel的市场策略,因为对一般用户来说,越高等于越好。Intel的“四芯”FSB实际上具有一个现实的优势,那就是以较小的性能损失为代价允许P4芯片与内存不同步运行。每个时钟越高的周期速度使得它越有机会让内存周期与CPU周期重合,那等同于越好的性能。
九、为什么让PCI/AGP总线超规格运行会导致不稳定?
让PCI总线超规格运行导致不稳定主要是因为它强制具有非常严格容许偏差的的部件运行在不同的频率下。PCI规格通常是规定在33MHz下。有时它规定在333MHz下,我相信那是接近于真正的规格的。高PCI速度的主要受害者是硬盘控制器。某些控制器卡具有比其它卡更高的容许偏差,那么能够运行在增加的速度下而没有显而易见的损害。
然而,在大多数主板上的板载控制器(特别是SATA控制器)对高PCI速度是极端敏感的,如果PCI总线运行在35MHz下就会有损害和数据丢失。大多数能够应付34MHz,实际上超规格幅度小于1MHz(取决于主板怎样舍入到34MHz……例如,大多数主板可能会在134至137MHz之间的任何FSB下汇报34MHz的PCI速度。实际的范围是从335MHz到3425MHz,并且可能基于主板时钟频率上的变动而变化更大。在更高的FSB和更高的分频器下,范围可能会更大)。
声卡和其它集成的外围设备在PCI总线超规格运行时也受损害。ATI显卡对高AGP速度比nVidia卡有小得多的容许偏差(直接关系到PCI速度)。记住,大多数RealtekLAN卡(基于PCI并占用扩展插槽的)被设定在从30到40MHz之间的任何频率下安全运转。
十、什么是倍频?
倍频结合FSB来确定芯片的时钟速度。例如,12的倍频搭配200的FSB将提供2400MHz的时钟速度。像在上面超频章节中说明的那样,有些CPU是锁倍频的而有些没有,就是说只有某些CPU允许倍频调节。如果拥有倍频调节,就能够用于要么在FSB受限制的主板上获得更高的时钟速度,要么在芯片受限制时获得更高的FSB。
十一、什么是内存分频?
内存分频确定了内存时钟速度对FSB的比率。2:1的FSB:RAM分频将得到100MHz的RAM时钟对200MHz的FSB。分频最常见的使用是让运行在250FSB的P4C系统搭配PC3200RAM,使用5:4分频。在大多数Intel系统上还有4:3分频和3:2分频。Athlon系统在使用分频时不能像P4系统那么有效地利用内存,正如上面FSB部分中说明的那样。内存分频应该只用于获得稳定性,而不是一时性起,因为就算在P4上它也损害性能。如果系统没有采取内存分频都是稳定的话(或是如果内存电压提升能够解决问题的话),那就不要使用分频。
十二、不同的内存延时意味着什么?
CAS延时,有时也称为CL或CAS,是RAM必须等待直到它可以再次读取或写入的最小时钟数。很明显,这个数字越低越好。tRCD是内存中特殊行上的数据被读取/写入之前的延迟。这个数字也是越低越好。
tRP主要是行预充电的时间。tRP是系统在向一行写入数据之后,在另一行被激活之前的等待时间。越低越好。tRAS是行被激活的最小时间。所以基本上tRAS是指行多少时间之内必须被开启。这个数字随着RAM设置,变化相当多。
十三、不同的内存等级是指什么?(PC2100/PC2700/PC3200等等)
等级直接是指能得到的最大带宽,而间接指内存时钟速度。例如,PC2100拥有21GB/S的最大传输速度,和133MHz的时钟速度。作为另一个例子的PC4000,具有4GB/S的理想传输速度和250MHz的时钟。要从PCXXXX等级中获得时钟速度,把等级除以16就行了。把速度等级乘上16就得到了带宽等级。
十四、DDRXXX怎样表示实际的内存时钟速度?
DDRXXX正好是实际时钟速度的两倍;也就是说,DDR400是设定在200MHz下的。如果想要知道DDRXXX速度的PC-XXXX速度,把它乘上8就行了。

140W。
e51650v3所属的系列是至强处理器E5系列,核心数量为6核,核心电压为13伏,最大Turbo频率38GHz,超频功耗为140W。
e51650v3是一款服务器,CPU系列为XeonE5v3系列,支持定向IO虚拟化技术,按需配电技术,按需配电技术,温度监视技术,数据保护技术,平台保护技术。

酷睿超频 简单介绍

在Nehalem微架构中,每个处理核心都带有自己的PLL同步逻辑单元,每个核心的时钟频率都是独立的,而且每个处理核心都是有自己单独的核心电压,这样的好处是在深度睡眠的时候,个别的处理核心几乎可以完全被关闭。

正是由于Nehalem的特殊设计,使得它有一个很重要的技术,对用户来说也很有实用性,那就是Turbo Boost技术,它能让核心运行动态加速。可以根据需要开启、关闭以及加速单个或多个核心的运行。如在一个四核的Nehalem处理器中,如果一个任务是单执行绪的,则可以关闭另外三个核心的运行,同时把工作的那个核心的运行主频提高,这样动态的调整可以提高系统和CPU整体的能效比率。

Lynnfield核心的Core i5-750(酷睿i5-750)和Core i7-860/870(酷睿i7--860/870)都是能支持Turbo Boost技术的,并且能力较Bloomfield核心更强,比如同频率的Core i5-750和Core i7-920最大的单核心Turbo频率分别为32GHz和293GHz,这应该是Lynnfield核心在功耗上更低的缘故。

在测试中也验证了Core i5-750的Turbo频率,在BIOS设定为Auto的情况下,通过指定第一个核心运行单执行绪的SuperPI,Core i5-750便会自动从原来的20x倍频提升到24x倍频,此时第一个核心频率达到了32GHz,为了稳定运行这个频率,核心电压也从115V提升到了126V,此时其它三个核心是被关闭。

在提升到Turbo频率之前,PCU功耗控制单元是要进行侦测的,以保证TDP不会超过额定的范围。也就是说Turbo Boost技术相当安全可靠,它最大限度的发挥了CPU的能力,而这一切都是自动实现的,对于很多普通用户来说,可以得到实实在在的好处。

intel-i5 i7睿频加速技术

英特尔睿频加速技术是英特尔酷睿i7 处理器和英特尔酷睿i5 处理器的独有特性。该技术可以智慧型地加快处理器速度,从而为高负载任务提供最佳性能--即最大限度地有效提升性能以匹配工作负载。

加速技术

定义

英特尔睿频加速技术就是当存在足够的主频提升空间时,英特尔睿频加速技术支持一个或多个处理核心以高于额定频率的频率运行。由此可支持处理器根据应用程式的强度自动、灵活地提高处理器性能,无需用户干预,处理器即可自动、智慧型地完成运行主频提升这一工作。

工作原理

当作业系统遇到计算密集型任务(例如处理复杂的游戏物理引擎或实时预览多媒体编辑内容)时,它需要CPU提供更强的性能。这时CPU会确定其当前工作功率、电流和温度是否已达到最高极限。如仍有多余空间,则CPU逐渐提高活动核心的频率,以进一步提高当前任务的处理速度。

优势

要证明英特尔睿频加速技术的优势,最简单的方法是与汽车内的加热器进行比较。在正常模式下,加热器会通过仪表板和地板通风孔提供一定热量。在关闭地板通风孔之后,它可以借助额外功率通过仪表板提供更多热量。

英特尔酷睿i7/i5 处理器以相同的方式配置,为每个核心提供整体的额定功率。然而,如果一个或多个核心未使用满其额定功率,则处理器可自动智慧型地把未使用的功率转移至正在工作的核心。由此,工作中的的核心即可以高于额定频率的主率运行,从而更快速地完成任务。

超频软体

Redstorm2

Soltek硕泰克主机板Redstorm2超频工具最新20 VIA版ForWin9x/ME/2000/XP(2004年3月5日发布)RedStorm红色风暴是Soltek研发的一项需要配合主机板BIOS使用的自动超频技术,RedStorm会自动查找CPU超频极限与系统稳定的最佳平衡点,而不需要用户为了超频去做设定、重启的反复测试。

AMD

OverDrive是AMD官方推出的一款系统检测、超频工具,专为Spider平台打造,即支持Phenom处理器、7系列晶片组和Radeon HD 3000系列显示卡。AMD OverDrive 可以帮助手动或自动控制处理器、晶片组、记忆体、显示卡等部件,并按照自己的需要进行细致入微地调节。

OverDirve 2017版的修正补丁,解决了在Windows Vista系统中无法正确识别Phenom处理器、启动时提示"未检测到AMD CPU"的问题。该补丁其实只有一个Enginedll程式库,覆盖掉原安装目录下的同名档案即可。

当然,要想使用OverDrive,一个最基本的前提就是必须拥有一块7系列晶片组主机板,在其他系统上强行安装也无法启动。

1、增加对AMD 780G晶片组的支持

2、高级性能调节选单里可以手动调节780G Radeon HD 3200集成显示卡的时钟频率

3、增强对Phenom 9600 BE、Athlon 64 X2 5000+ BE等未锁倍频处理器自动超频的支持

EasyTune5

Gigabyte技嘉主机板EasyTune5超频工具最新B711011版For Win2000/XP/XP-64/Vista-32/vista-64(2007年11月23日发布)EasyTune5是技嘉推出的基于Windows平台的超频工具,具有非常酷的界面。用户可以按照自己的特点选择Easy Mode或者Advanced Mode。对于选择Easy Mode的用户,只需点击Auto Optimize就可以自动实现CPU超频,软体会自动尝试可能使用的频率,并把结果显示在控制台上。如果用户精通超频,就可以选择Advanced Mode,利用它可以小范围的修改主频,充分地发挥系统的最高性能。EasyTune5还是一款技嘉主机板状况监测软体,用户可以调节设定CPU/AGP/Memory的电压和频率,可以设定系统风扇和系统温度的极限报警范围,还能调节System Bus的频率,在EasyTune5的控制界面上,一目了然的显示著当前系统各项状态,可以让用户及时发现自己系统的隐患。这是最新版本,注意安装之前需要卸载以前的EasyTune4、EasyTune5版本以及GWUM驱动。

超频主机板 微星"易超频"

第二代"易超频"技术--"易超频开关"

不少用户对插接跳线并不见得非常顺手,所以微星工程师考虑到这点,就把原来的跳线设计改成了三开关组合设计,其实它的原理和前面跳线设计是一样的,只不过用户在使用过程中,只需要上下波动三个开关,实现相应的超频组合,进一步方便用户超频处理器。

微星在大量的P43/P45上使用了这个简单实用的"易超频开关"技术!甚至在AMD平台上也大量的采用这个技术,其提供了一个双开关设计提供了200MHz向220MHz、230MHz、240MHz HT汇流排频率调节用。户在购买了较低频率的AMD处理器后,也能通过这么简单的开关达到提升性能的目的。

第三代"易超频"技术--"易超频镟钮"

如果说有玩家觉得易超频开关还不够简单的话,那么微星的第三代"易超频"技术--"易超频镟钮"可以说是方便到了极点。

如上图所示,玩家只要轻轻转动"易超频镟钮",即可在BIOS或作业系统中实时看到外频频率增减状态,彻底摆脱以前要先重启电脑进入到BIOS设定,调整后再开机的情况。无需繁琐的重复开机,利用微星的"易超频镟钮"可以实现实时的超频,简单易用。

目前在微星最新的790GX-GD70主机板中就采用了"易超频镟钮"技术,为玩家提供了更便利的超频途径,相信"易超频镟钮"将会大量的套用在微星其他系列的主机板上 。

华硕"一键超频"

华硕"一键超频"技术远没有字面上理解的这么简单,他也需要用户通过一定的设定之后才能实现真正的一键超频。当然这个过程并不复杂,而且我们只需要设定一次,日后使用中也无需多次进行设定即可完成一键超频。整个技术包括两部分"Turbo V" 和"Turbo Key" ,我们首选需要使用Turbo V软体(主机板附属档案提供)对系统的状态进行设定,通过对CPU外频、电压、分频等选项的设定来完成超频,成功之后保存当前的超频状态。

一键超频

通过Turbo V完成超频并且保存之后我们在使用Turbo Key调出刚才保存的超频状态,点击确定完成整个一键超频的设定部分,最后我们点击电源按钮之后即可让系统运行在之前设定的超频状态。了解了整个过程是不是没有想像中那么复杂呢

华硕一键超频(Turbo V和Turbo Key)

优点: 整个 *** 作界面异常简洁,没有繁琐的子选单,全部功能都在一个视窗中呈现,功能丰富。

缺点: 预设定的3个超频模式幅度较小(1%、3%、5%) 。

硕泰克智慧型星

硕泰克公司在北京发布了"SAT智慧型星技术",同时也向大家透露了硕泰克致力于显示卡改造,为玩家提供更大的DIY乐趣。硕泰克本次发布的"SAT智慧型星技术"全称为Smart Aeleration Technology,也叫做智慧型超频技术,他能根据用户所使用系统是否满载,自动的调解处理器的频率,实时的调节计算机的整体性能,在系统负载大,处理任务多的情况下,硕泰克"SAT智慧型超频"技术能提供高计算机性能;当系统负载小的情况下,硕泰克"SAT智慧型超频"技术又会自动的将频率调解回正常状态,节约能源。

带有智慧型星超频技术的P4系统

而这不需要独立的第三方软体实现,只要在主机板BIOS中进行相应的设定即可。BIOS选项中有"Disabled 未开启"、"Enhance 高速模式"、"Performance 超音速模式"、"Maximum 光速模式"几种模式,在选择Maximum模式的情况下,这项技术可以在你需要的时候将CPU的频率超到保证安全的一个最大程度,这个和你机器的CPU占用率有关。

热管电源

初涉电源市场的超频三低调准备了1年多的时间,共推出了四个系列11款产品,分别为青金石、绿松石、橄榄石、大理石四个系列,所有型号全部搭配了双重散热系统--纯铜热管散热器和液压轴承子d头风扇。

值得一提的是超频三推出的热管超频电源,是整个电源行业独家率先支持酷睿I7/I5的Turbo Boost 睿频加速技术,实现自动超频。其中,橄榄石400 热管版,额定功率300W,高效被动式PFC及完整EMI电路,完全滤除电网内外干扰和辐射伤害,支持市场中最新的多核心CPU以及独立供电高端显示卡。

在配置方面,橄榄石400 热管版采用24+4Pin自由转换接口,支持24Pin供电接口主机板,+12V电流增强输出,提供1个PCIE 6Pin显示卡接口,支持4个SATA 3Gb/S硬碟,其主要线材才采用蛇皮网包裹。160mm长外壳的表面还采用了高档喷黑漆处理。

在品质方面,橄榄石400 热管版严格通过国家3C认证 ,真正符合Intel ATX12V 23规范,并采用欧美标准的RoHS无铅制程,世界级品质,绿色环保。而电源内部用料优良、做工精细,适合超频玩家和高清达人。

在散热方面,超频三专利纯铜热导管穿鳍散热系统结合120mm液压轴承静音风扇,最大噪音24分贝,其温控功能更可在电源低负载的情况下极大降低风扇转速。

支持酷睿I5/I7自动超频功能的还有:绿松石550 高效版、绿松石450 高效版、绿松石600 高效版、绿松石500 高效版、绿松石500 豪华版、绿松石600 豪华版、青金石750 豪华版等产品。

架构经理

赵军于1995年6月毕业于北京大学计算机系并获得计算机科学理学硕士学位,之后在北京大学信息管理系任教直到1997年。

赵军于1997年7月加入英特尔公司就任计算机平台技术工程师。从2000年到2003年,他在英特尔中国OEM部门担任高级技术工程师,并于2001年获得"英特尔成就奖"。

自2003年10月~2007年5月,赵军在英特尔中国的领先技术销售部门担任工程技术经理、技术市场经理。从2007年6月开始,他在产品市场部担任资深架构经理。

赵军明确表示:这种加速技术不能成为"智慧型超频,自动超频"!

intel的睿频加速技术是享受intel质保的,对cpu的"超频"是安全的!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13170579.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-15
下一篇 2023-06-15

发表评论

登录后才能评论

评论列表(0条)

保存