视频分析识别系统
关键字:AI视频行为识别分析系统、AI视觉分析系统、AI图像识别分析系统、AI识别系统、AI行为分析系统
概述
背景
人工智能大时代背景下,视频应用领域相关的行业应用方式已经发生了深刻的变化,各论安防监控还是各类垂直行业视频应用,都需要AI视觉分析与识别技术助力,而且需求广泛而迫切。在应用层面,以AI分析识别技术为核心,集传统视频监控和行业相应传感器/预警等设备一并接入管理并相互联动的一体化综合管理成了刚性应用需求,由此,深圳融合永道科技有限公司早在2012年就已以此方向,研发新一代AI智能视频一体化平台软件,深挖行业需求,响应时代号角,向AI领域进军。
目标
本平台在我司AI-MIS分析识别算法中间件为核心的技术框架下,以AI人工智能机器视觉技术为支撑,以AI视频应用为核心,把实现客户需求为目标。细化应用规则,在良好的横向业务应用规则扩展支持的同时,又重视纵向的技术深度化研发。持续研发适配更多的场景业务,为社会治安治理、保障安全生产提供有力的技术手段。
系统架构
1、如果你说的AI是人工智能:
学习人工智能基础可关注哔哩哔哩up主跟李沐学AI
相关视频教程如下:
人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
2、如果你说的AI是Adobe Illustrator:
学习AI软件可以关注哔哩哔哩up主柴大丰老师
相关视频教程如下:
AI正在成为企业助力决策、提升客户体验、重塑商业模式与生态系统、乃至整个数字化转型的关键驱动力。
但在崭新的AI时代,数据中心网络性能也正在成为AI算力以及整个AI商用进程发展的关键瓶颈,正面临诸多挑战。
为此,华为以“网络新引擎 AI赢未来”为主题发布了业界首款面向AI时代数据中心交换机CloudEngine 16800,将人工智能技术创新性的应用到数据中心交换机,引领数据中心网络迈入AI时代。
AI时代数据中心网络面临三大挑战
当前,数字化转型的持续推进,正在提速驱动数据量暴增;同时,语音/视频等非结构化数据占比持续提高,庞大的数据量和处理难度已远超人类的处理能力,需要基于机器运算深度学习的AI算法来完成海量无效数据的筛选和有用信息的自动重组,从而获得高效的决策建议和智慧化的行为指引。
根据华为GIV 2025(Global Industry Vision)的预测,企业对AI的采用率将从2015年的16%增加到2025年86%,越来越多的企业将利用AI助力决策、重塑商业模式与生态系统、重建客户体验。
作为人工智能的“孵化工厂”,数据中心网络正成为AI等新型基础设施的核心。但与此同时,随着AI时代的到来,AI人工智能的算力也受到数据中心网络性能的影响,正在成为AI商用进程的一大瓶颈。
华为网络产品线总裁胡克文指出,AI时代的数据中心网络将面临以下三大挑战:
挑战1.AI算力。高性能数据中心集群对网络丢包异常敏感,未来的网络应该做到零丢包。但传统的以太网即使千分之一的丢包率,都将导致数据中心的AI算力只能发挥50%。
挑战2.大带宽。未来5年,数字洪水猛增近20倍,现有100GE的网络无法支撑。预计全球年新增数据量将从2018年的10ZB猛增到2025年180ZB(即1800亿TB),现有100GE为主的数据中心网络已无法支撑数据洪水的挑战。
挑战3.要面向自动驾驶网络的能力。随着数据中心服务器规模的增加,以及计算网络、存储网络和数据网络三网融合,传统人工运维手段已难以为继,亟需引入创新的技术提升智能化运维的能力,如何用新的技术去使能、把网络问题排查出来成为业界都在思考的问题。
华为定义AI时代数据中心交换机三大特征
从行业大势来看,随着以人工智能为引擎的第四次技术革命正将我们带入一个万物感知、万物互联、万物智能的智能世界,数据中心网络也必须从云时代向AI时代演进。在华为看来,数据中心需要一个自动驾驶的高性能网络来提升AI算力,帮助客户加速AI业务的运行。
那么,AI时代的数据中心网络究竟该如何建设呢?胡克文指出,“华为定义了AI时代数据中心交换机的三大特征:内嵌AI芯片、单槽48 x 400GE高密端口、能够向自动驾驶网络演进的能力。”
特征1.业界首款内嵌AI芯片数据中心交换机,100%发挥AI算力
从应用侧来看,刷脸支付的背后是上亿次图像信息的智能识别,深度 健康 诊断需要基于数千个算法模型进行分析,快捷网购体验离不开数百台服务器的智能计算。也就是说,新商业物种的诞生,产业的跨越式发展以及用户体验得以改变,强烈地依赖于人脸识别、辅助诊断、智能推荐等AI应用的发展。
但由于AI算力受到数据中心网络性能的影响,正在成为AI商用进程的关键瓶颈。为了最大化AI算力,存储介质演进到闪存盘,时延降低了不止100倍,计算领域通过采用GPU甚至专用的AI芯片将处理数据的能力提升了100倍以上。
CloudEngine 16800是业界首款搭载高性能AI芯片的数据中心交换机,承载独创的iLossLess智能无损交换算法,实现流量模型自适应自优化,从而在零丢包基础上获得更低时延和更高吞吐的网络性能,克服传统以太网丢包导致的算力损失,将AI算力从50%提升到100%,数据存储IOPS(Input/Output Operations Per Second)性能提升30%。
特征2.业界最高密度单槽位48 x 400GE,满足AI时代5倍流量增长需求
数据中心是互联网业务流量汇聚点,企业AI等新型业务驱动了数据中服务器从10G到25G甚至100G的切换,这就必然要求交换机支持400G接口,400GE接口标准化工作已经于2015年启动,目前针对数据中心应用已经完成标准化,400G时代已经来临。
集群的规模是数据中心架构演进的动力,经典的无阻塞CLOS理论支撑了数据中心服务器规模从千台、万台到今天10万台规模的发展,增大核心交换机容量是数据中心规模扩大的最常见手段。以一个1000T流量规模的数据中心组网为例,采用400GE技术,核心汇聚交换机需要5K个接口,相对100GE技术减少75%。
为此,CloudEngine 16800全面升级了硬件交换平台,在正交架构基础上,突破超高速信号传输、超强散热、高效供电等多项技术难题,不仅支持10G→40G→100G→400G端口平滑演进能力,还使得单槽位可提供业界最高密度48端口400GE线卡,单机提供业界最大的768端口400GE交换容量,交换能力高达业界平均的5倍,满足AI时代流量倍增需求。同时,CloudEngine 16800在PCB板材、工艺、散热,供电等多方面都进行了革命性的技术改进和创新,使得单比特功耗下降50%。
特征3.使能自动驾驶网络,秒级故障识别、分钟级故障自动定位
当数据中心为人工智能提供了充分的技术支撑去创新时,人工智能也给数据中心带来巨大利益,如借助telemetry等技术将异常信息送到集中的智能运维平台进行大数据分析,这极大提升了网络的运行和运维效率,降低运维难度和人力成本。但是当前计算和存储正在融合,数据中心服务器集群规模越来越大,分析的流量成千倍的增长,信息上报或者获取频度从分钟级到毫秒级,再加上信息的冗余,这些都使得智能运维平台的规模剧增,智能运维平台对性能压力不堪重负降低了处理的效率。如何减轻智能运维平台的压力,在最靠近服务器,最靠近数据的网络设备具有智能分析和决策功能,成为提升运维效率的关键。
CloudEngine 16800基于内置的AI芯片,可大幅度提升“网络边缘”即设备级的智能化水平,使得交换机具备本地推理和实时快速决策的能力;通过本地智能结合集中的FabricInsight网络分析器,构建分布式AI运维架构,可实现秒级故障识别和分钟级故障自动定位,使能“自动驾驶网络”加速到来。该架构还可大幅提升运维系统的灵活性和可部署性。
引领数据中心网络从云时代迈入AI时代
自2012年进入数据中心网络市场以来,目前华为已服务于全球6400+个用户,广泛部署在中国、欧洲、亚太、中东、非洲、拉美等全球各地,帮助互联网、金融、政府、制造、能源、大企业等多个行业的客户实现了数字化转型。
2017年华为进入Gartner数据中心网络挑战者象限;2018年进入Forrester数据中心SDN网络硬件平台领导者;2013-2018年,全球数据中心交换机厂商中,华为连续六年复合增长率第一,发展势头强劲。
早在2012年,华为就以“云引擎,承未来”为主题,发布了CloudEngine 12800数据中心核心交换机,七年以来这款面向云时代的交换机很好的支撑了数据中心业务d性伸缩、自动化部署等核心诉求。
而随着本次华为率先将AI技术引入数据中心交换机、并推出面向AI时代的数据中心交换机CloudEngine 16800,华为也在引领数据中心网络从云时代迈入AI时代。
2018年,华为轮值董事长徐直军宣布:将人工智能定位为新的通用技术,并发布了人工智能发展战略,全面将人工智能技术引入到智能终端、云和网络等各个领域。而本次华为发布的业界首款面向AI时代数据中心交换机CloudEngine 16800,也是华为在网络领域持续践行AI战略的集中体现。
而作为华为AI发展战略以及全栈全场景AI解决方案的一个重要组成部分,CloudEngine 16800不仅是业界首款面向AI时代的数据中心交换机,还将重新定义数据中心网络的代际切换,助力客户使能和加速AI商用进程,引领数据中心真正进入AI时代。
人工智能(AI)是一门研究、开发、实现和应用智能的科学技术,旨在使计算机和机器具备一定程度的人类智能,以便执行某些复杂的任务,甚至超越人类的智能水平。
人工智能领域涉及多个学科,包括计算机科学、数学、控制论、语言学、心理学、生物学、哲学等。人工智能可以通过各种技术实现,如机器学习、神经网络、自然语言处理、计算机视觉等,它们可以被用于机器人、智能家居、自动驾驶汽车、医疗保健、金融服务等多个领域。
人工智能的发展阶段分为弱人工智能、强人工智能和超强人工智能。弱人工智能专注于特定领域的问题解决,强人工智能可以胜任人类所有工作,而超强人工智能可以在各种领域超越人类的创造力、智能和社交能力。人工智能技术发展迅速,正在改变我们的生活方式和社会结构。一旦人工智能被大范围应用,对于计算资源的渴求程度将会呈现指数级的提升,那么伴随而产生的 IT 设备投资需求将出现井喷。未来人工智能的应用场景可分为两部分:一部分是替代人工,做一些重复性的劳动,比如全自动生产线、机器翻译、无人驾驶等;另一部分是辅助人类实现更高层次的智能,比如智能交通分流系统、虚拟个人助理、VR/AR 眼镜等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)