大数据、云计算、人工智能之间有什么样的关系_什么是大数据,云计算和人工智能他们有哪些应用

大数据、云计算、人工智能之间有什么样的关系_什么是大数据,云计算和人工智能他们有哪些应用,第1张

给你解释一下这些术语:

云计算:就是个炒得很热的商业概念,其实说白了就是将计算任务转移到服务器端,用户只需要个显示器就行了,不过服务器的计算资源可以转包。当然,要想大规模商业化,这里还有些问题,特别是隐私保护问题。

数据:说白了就是数据太多了。如今几兆的数据在20年前也是大数据。但如今所说的大数据特殊在哪呢?如今的问题是数据实在是太多了,这已经超过了传统计算机的处理能力(区别与量子计算机),所以对于大数据我们不得不用一些折衷的办法(比如数据挖掘),就是说没必要所有数据都需要精确管理,实际上有效数据很有限,用数据挖掘的方法把这些有限的知识提取出来就行了。·此外,数据抽样,数据压缩也是解决大数据问题的一些策略。

数据挖掘:从数据中提取潜在知识,这些知识可以描述或者预测数据的特性。有代表性的数据挖掘任务包括关联规则分析、数据分类、数据聚类等,这些你在任一本数据挖掘教材都可以了解。下面我说说和大数据的区别:数据挖掘只是大数据处理的一个方法。马云所说的大数据,或者如今商业领域所说的大数据,实际上指的就是数据挖掘,其实真正所谓大数据,或者Science杂志中提到的大数据,或者奥巴马提出的大数据发展战略,我的理解是,这些都远远大于数据挖掘的范畴,当然数据挖掘是其中很重要的一个方法。真正目的是如何将大数据进行有效管理。

机器学习:这个词很虚,泛指了一大类计算机算法。重点是学习这个词,如果想让计算机有效学习,目前绝大多数方法都采用了迭代的方法。所以在科研界,只要是采用了这种迭代并不断逼近的策略,一般都可以归到机器学习的范畴。此外,所谓学习,肯定要知道学什么,这就是所谓训练集,从训练集数据中计算机要学到其中的某个一般规律,然后用一些别的数据(即测试集)来看看学得好不好,之后才能用于实际应用。所以,选取合适的训练集也是个学问。

模式识别:意思就是模式的识别。模式多种多样,可以是语言,可以是图像,可以是事物一些有意义的模块,这些都算。所以总体来说,模式识别这个词我是觉得有点虚,倒是具体的人脸图像识别、声音识别等,这些倒是挺实在的。也许是我不太了解吧。

另外说说你的其他问题。

传统分析方法不包括数据挖掘。对于数据分析这块我不是很了解,不过可以肯定的是,传统分析都有一定的分析方向,比如我就想知道这两个商品的关联情况,那我查查数据库就行了。数据挖掘虽说有些历史,不过也挺时髦的,它是自动将那些关联程度大的商品告诉你,这期间不需要用户指定数据分析的具体对象。

如果想应对大数据时代,数据挖掘这门课是少不了的。此外对数据库,特别是并行数据库、分布式数据库,最好了解点。至于机器学习和模式识别,这些总的来说和数据挖掘关系不太大,除了一些特殊的领域外。

总之,概念挺热,但大数据还很不成熟,无论从研究上还是商业化上。我目前在作大数据背景下的算法研究,说实话,目前基本没有拓展性非常强的算法,所以未来大数据的发展方向,我也挺迷茫。

PS:将数据挖掘应用于商业,最最重要的就是如何确定挖掘角度,这需要你对具体应用的领域知识非常了解,需要你有非常敏锐的眼光。至于数据挖掘的具体算法,这些就交给我们专门搞研究的吧!(对算法的理解也很重要,这可以把算法拓展到你的应用领域)

其实你可以去腾讯云去租用GPU云服务器来进行深度学习计算。腾讯云 GPU 实例类型众多,应用广泛,不同的实例类型有不同的产品定位。用户可以根据自身的应用场景,结合性能、价格等因素,选择最符合业务需求的实例。
比如你要进行深度学习计算,建议使用腾讯云GN8/GN10X 实例。GN10Xp配备Tesla V100 NVLink 32GB GPU,具有强大的单精度浮点运算能力,并具备较大的 GPU 板载内存。最大实例规格配置8个 V100 ,80个 vGPU 和320GB主机内存,是深度学习训练的首选。
GN10Xp 最大实例规格具备1256 TFLOPS 单精度浮点运算能力,支持 Tensor Core 加速,单卡搭载32GB显存,GPU 卡之间通过300GB/s的 NVLink 高速互连。强大的计算与数据吞吐能力大大缩短训练周期,使得复杂模型的快速迭代成为可能,人工智能相关业务得以把握先机。
腾讯云GPU云服务器,管理很简单GPU云服务器采用和云服务器CVM一致的管理方式,无需跳板机登录,简单易用。清晰的显卡驱动的安装、部署指引,免去高学习成本。而且节约成本,你无需预先采购、准备硬件资源,一次性购买,免除硬件更新带来的额外费用,有效降低基础设施建设投入。目前,腾讯云的GPU云服务器已全面支持包年包月计费和按量计费,你可以根据需要选择计费模式。

人工智能的核心是机器学习,广泛应用到图像识别、市场分析、故障检测、自然语言处理、医疗诊断等场景中。这也意味着人工智能服务器将会迎来一定的需求增长。如果需要这样的服务器,可以去十次方算力租赁平台了解下。

我们知道了基础设施是人工智能产品得以存在的原始基础,那么有基础设施有哪些呢?

传感器是一种物理装置或生物器官,能够探测或感受外界的信号、物理条件或化学组成,并将探知的信息船体给其他装置或器官,比如人的皮肤能感觉到冷热、湿润、干燥,感受器将这些信号传输给大脑,大脑再指令人做出加衣减衣喝水开窗通风等的行为。

传感器的作用是将一种信号模式转换成另外一种信号模式。传感器如何分类呢?

按照不同的领域,传感器分为以下类型:压力传感器、温度传感器、PH传感器、流量传感器、液位传感器、超声波传感器、浸水传感器、照度传感器等等,传感的种类繁多,主流传感器可以分为以下几种:

(1)生物传感器

它是将各类型的生物响应转化成电信号的分析设备。目前生物传感器主要应用于医疗保健领域、食品检测领域、环江检测领域等

(2)光敏传感器

它是将光信号转化为电信号的传感器,可以理解为模拟人的视觉能力,图像传感CCD、CMOS、人体感应灯、人体感应开关、光控开关、手机屏幕灵度调节等,都是光敏传感器的应用实例。

(3)声音传感器

声音传感器就可以理解为人的AI产品的耳朵。常见的走廊声控灯就用到了声音传感器。

(4)化学传感器

它对各种化学物质敏感,并将其浓度转化为电信号,是AI产品的“鼻子”。目前化学传感器被广泛应用于大气污染监测、矿产资源的探测、气象观测、工业自动化、农业生鲜保存等领域。

总体来讲,目前传感器主要应用于四类人工智能产品,分别是:可穿戴应用、高级辅助驾驶系统、健康监测、工业控制。

随着图像识别、语音识别、搜索/推荐引擎等深度学习在应用中其价值得到了广泛的认可,其过程的两个关键环节——训练和推断需要强大的计算能力,因此,芯片已经成为AI领域建立竞争壁垒的关键。

AI芯片有哪些类别呢?按照用途可以分为以下三类:模拟训练、云端推断、设备端推断

(1)模拟训练环节的芯片

这个过程由于要处理海量的数据和复杂的深度神经网络,因此需要GPU来提高深度模型的训练效率,与CPU相比,GPU具备强大的并行计算能力与浮点能力,还能提供更快的处理速度、更少的服务器投入和更低的功耗。除了PGU外,谷歌提供的TPU也能提供训练环节的深度网络加速能力。

(2)云端推断的芯片

目前主流的AI应用需要通过云端提供服务,将采集到的数据传到云端服务器,再服务器的、CPU、GPU、TOPU出路推断任务,然后再将处理结果返回终端。所以,是将推断环节放在云端。

(3)终端设备的芯片。

也可称为嵌入式设备的芯片,比如智能手机、智能安防摄像头、机器人等设备就是采用这类芯片。

按定制化程度划分,又可以分为通用芯片、半定制化芯片(FPGA芯片)、全定制化芯片(ASIC)。

3、基础平台

(1)大数据技术

大数据技术是人工智能的前提,而大数据的目标只有一个——从海量数据中挖掘价值。

(2)云计算技术

根据美国国家标准与技术研究院的定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需很少的管理工作,或与服务上进行很少的交互。

云计算技术大大减少了企业的经济消耗。

了解清楚社么是云计算,你就清楚了!
目前云计算是新新事物,新新事物风险和机遇并存。

云计算最有价值的理念之一是资源整合,物尽其用。
(之二是即服务的盈利模式)

所以,一台计算机成为云计算的服务器意义很小,
只要让它能充分运行就可以了,最多在理念之二有所体现,但无法支撑业务量不断发展的情势!

你可以在PAAS和SAAS层体现一下,IAAS层像普通服务器去用就是了。
以直白的方式来表达:
云计算是整合资源以即方式提供服务,它主要在三个层面体现技术和服务。
一个是硬件基础设施层面,让硬件资源以即方式提供服务;
(客户要硬件环境资源,登录资源池自己定制、然后交钱、最后获取资源,用多少付多少钱;
付费对象是:应用开发者,企业IT管理者,应用平台供应商等。);
一个是应用平台层面,让应用平台以即方式提供服务;
(供应商提高软件平台,平台可以开发、部署、管理、监控应用,提供开放的类APP商店;
付费对象是:应用开发者。)
一个是应用层面,让应用以即方式提供服务;
(应用开放商,把应用部署在应用平台,用户可以去使用这些应用,按即方式享受服务和付费;
付费对象是:终端消费者。)
即方式服务:
像水电一样,从你开始使用到你结束使用进行度量,你登录应用入口就可以直接使用应用,
甚至不用在你本地安装应用,就像打开水龙头就可以用水一样,然后付费,它本质是一种推
的服务、盈利模式。
所以,云计算要学习就多方多面。
不过,他们的根本基础还是计算机科学与技术,包括网络、硬件、软件等,
只是硬件或平台会比较侧重虚拟机、网格计算、分布式计算等方面的技术,
而应用会比较在意用户体验、大众互联方面,应用主要技术还是软件开放技术,
特别可能会热于android或ios或wm的WIFI移动应用的开发。
下一波的IT浪潮就是云计算、物联网、人工智能、生物技术。
目前云计算是新新事物,教学资源紧张是正常的,新新事物风险和机遇并存。
请相信机遇的东西确实是过了这个村,没了这个店,云计算目前就像初期的计算机专业一样,
等它成熟了,等你看到它的发展了,那时候你就落后,只能在前人后面捡烟头。
好好把握学习这个专业的机会,目前云计算处于发展初期,等你毕业刚好是大展拳脚的好时机!
相信选择这个新新行业有风险,但机会总是给第一个敢吃螃蟹的人。
~~~~~~~~~~~~~~~~~~~~~~~~
来自:广州溯源—物联网、云计算、人工智能---构建绿色未来

SCM是思腾合力推出的一款支持机器学习与深度学习框架的GPU集群调度系统,基于Hadoop Yarn完成了对TensorFlow、MXNet、PyTorch、Keras、XGBoost等常用框架的集成。SCM经过两年的快速发展,目前已更新到V40版本,可以为用户提供数据处理、模型训练、模型部署三大功能,同时提供文件管理、分布式训练、多用户管理等多种额外功能,极大地大大提高了GPU服务器的资源利用率,节约了用户的时间,而且具有高性能、易用性和稳定性三大特点。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13193437.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-18
下一篇 2023-06-18

发表评论

登录后才能评论

评论列表(0条)

保存