集群、分布式、微服务概念和区别

集群、分布式、微服务概念和区别,第1张

转自: >分布式Session一致性说白了就是服务器集群Session共享的问题。

Session是服务器用来保存用户 *** 作的一系列会话信息,由Web容器进行管理。单机情况下,不存在Session共享的情况,分布式情况下,如果不进行Session共享会出现请求落到不同机器要重复登录的情况。

假设第一次访问服务A生成一个sessionid并且存入cookie中,第二次却访问服务B客户端会在cookie中读取sessionid加入到请求头中。如果在服务B通过sessionid没有找到对应的数据,那么它创建一个新的并且将sessionid返回给客户端,这样并不能共享我们的Session无法达到我们想要的目的。

分布式:服务分散部署在不同服务器组成一个整体应用,分散压力,解决高并发。

假设访问量特别大,就可以做成分布式,将一个大项目拆分出来单独运行。跟cdn一样的机制。

Redis分布式:将redis中的数据分布到不同的服务器上,每台服务器存储不同内容。Mysql集群是每台服务器都存放相同数据。分布式部署:系统应用部署在2台或以上服务器或虚拟机上,服务间通过RPC、WCF(包含WebService)等交互,即可称作分布式部署。微服务也算作分布式的一种,反之则不然。分布式优点:1、将模块拆分,使用接口通信,降低模块之间的耦合度。2、将项目拆分成若干个子项目,不同团队负责不同子项目。3、增加功能时只需再加一个子项目,调用其它系统接口即可。4、可灵活进行分布式部署。5、提高代码的复用性,比如service层,如果不采用分布式rest服务方式架构,在手机Wap商城、微信商城、PC、Android、ios每个端都要写一个service层逻辑,开发量大,难以维护和一起升级,此时可采用分布式rest服务方式共用一个service层。缺点:系统之间交互要使用远程通信,接口开发增大工作量,但利大于弊。微服务:可单独部署运行的微小服务,一个服务只完成单一功能分散能力,服务之间通过RPC等交互,至少有一个数据库。用户量过大高并发时,建议将应用拆解为多个子系统,各自隔离,独立负责功能。缺点:服务数量大,后期运维较难。分布式、微服务区别:分布式依赖整体组合,是系统的部署方式;微服务是架构设计方式,粒度更小,服务之间耦合度更低。独立小团队负责,敏捷性更高。集群:多台服务器复制部署相同应用,由负载均衡共同对外提供服务,逻辑功能仍是单体应用。项目如果跑在一台机器上,这台机器如果出现故障,或者用户请求量比较高一台机器支撑不住,网站可能就访问不了。那怎么解决呢?就需要使用多台机器,复制部署一样的程序,让几个机器同时运行网站。那怎么分发请求到所有机器上?所以负载均衡的概念就出现了。负载均衡:将请求分发以分摊服务器压力。基于反向代理能将所有的请求根据指定的策略算法,分发到不同的服务器上。实现负载均衡常用Nginx、LVS。负载均衡服务器出现问题了怎么办?所有冗余的概念就出现了。冗余:两台或多台服务器,一个主服务器,一个从服务器。假设一个主服务器的负载均衡服务器出现问题,从服务器能替代主服务器来继续负载均衡。实现的方式就是使用Keepalive来抢占虚拟主机。双机双工模式:目前Cluster(集群)的一种形式,两台服务器均为活动状态,同时运行相同的应用,保证整体的性能,也实现了负载均衡和互为备份。WEB服务器或FTP服务器等用此种方式比较多。实现多台服务器代码(文件)同步方案:1、负载均衡中实现代码同步rsync。2、rsync+inotify逐一文件监听并实时同步。3、实现redis共享session。

分布式架构的演进
系统架构演化历程-初始阶段架构
初始阶段 的小型系统 应用程序、数据库、文件等所有的资源都在一台服务器上通俗称为LAMP
特征:
应用程序、数据库、文件等所有的资源都在一台服务器上。
描述:
通常服务器 *** 作系统使用Linux,应用程序使用PHP开发,然后部署在Apache上,数据库使用MySQL,汇集各种免费开源软件以及一台廉价服务器就可以开始系统的发展之路了。
系统架构演化历程-应用服务和数据服务分离
好景不长,发现随着系统访问量的再度增加,webserver机器的压力在高峰期会上升到比较高,这个时候开始考虑增加一台webserver
特征:
应用程序、数据库、文件分别部署在独立的资源上。
描述:
数据量增加,单台服务器性能及存储空间不足,需要将应用和数据分离,并发处理能力和数据存储空间得到了很大改善。
系统架构演化历程-使用缓存改善性能
特征:
数据库中访问较集中的一小部分数据存储在缓存服务器中,减少数据库的访问次数,降低数据库的访问压力。
描述:
系统访问特点遵循二八定律,即80%的业务访问集中在20%的数据上。
缓存分为本地缓存和远程分布式缓存,本地缓存访问速度更快但缓存数据量有限,同时存在与应用程序争用内存的情况。
系统架构演化历程-使用应用服务器集群
在做完分库分表这些工作后,数据库上的压力已经降到比较低了,又开始过着每天看着访问量暴增的幸福生活了,突然有一天,发现系统的访问又开始有变慢的趋势了,这个时候首先查看数据库,压力一切正常,之后查看webserver,发现apache阻塞了很多的请求,而应用服务器对每个请求也是比较快的,看来 是请求数太高导致需要排队等待,响应速度变慢
特征:
多台服务器通过负载均衡同时向外部提供服务,解决单台服务器处理能力和存储空间上限的问题。
描述:
使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,提升系统的并发处理能力,使得服务器的负载压力不再成为整个系统的瓶颈。
系统架构演化历程-数据库读写分离
享受了一段时间的系统访问量高速增长的幸福后,发现系统又开始变慢了,这次又是什么状况呢,经过查找,发现数据库写入、更新的这些 *** 作的部分数据库连接的资源竞争非常激烈,导致了系统变慢
特征:
多台服务器通过负载均衡同时向外部提供服务,解决单台服务器处理能力和存储空间上限的问题。
描述:
使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,使得服务器的负载压力不在成为整个系统的瓶颈。
系统架构演化历程-反向代理和CDN加速
特征:
采用CDN和反向代理加快系统的 访问速度。
描述:
为了应付复杂的网络环境和不同地区用户的访问,通过CDN和反向代理加快用户访问的速度,同时减轻后端服务器的负载压力。CDN与反向代理的基本原理都是缓存。
系统架构演化历程-分布式文件系统和分布式数据库
随着系统的不断运行,数据量开始大幅度增长,这个时候发现分库后查询仍然会有些慢,于是按照分库的思想开始做分表的工作
特征:
数据库采用分布式数据库,文件系统采用分布式文件系统。
描述:
任何强大的单一服务器都满足不了大型系统持续增长的业务需求,数据库读写分离随着业务的发展最终也将无法满足需求,需要使用分布式数据库及分布式文件系统来支撑。
分布式数据库是系统数据库拆分的最后方法,只有在单表数据规模非常庞大的时候才使用,更常用的数据库拆分手段是业务分库,将不同的业务数据库部署在不同的物理服务器上。
系统架构演化历程-使用NoSQL和搜索引擎
特征:
系统引入NoSQL数据库及搜索引擎。
描述:
随着业务越来越复杂,对数据存储和检索的需求也越来越复杂,系统需要采用一些非关系型数据库如NoSQL和分数据库查询技术如搜索引擎。应用服务器通过统一数据访问模块访问各种数据,减轻应用程序管理诸多数据源的麻烦。
系统架构演化历程-业务拆分
特征:
系统上按照业务进行拆分改造,应用服务器按照业务区分进行分别部署。
描述:
为了应对日益复杂的业务场景,通常使用分而治之的手段将整个系统业务分成不同的产品线,应用之间通过超链接建立关系,也可以通过消息队列进行数据分发,当然更多的还是通过访问同一个数据存储系统来构成一个关联的完整系统。
纵向拆分:
将一个大应用拆分为多个小应用,如果新业务较为独立,那么就直接将其设计部署为一个独立的Web应用系统
纵向拆分相对较为简单,通过梳理业务,将较少相关的业务剥离即可。
横向拆分:将复用的业务拆分出来,独立部署为分布式服务,新增业务只需要调用这些分布式服务
横向拆分需要识别可复用的业务,设计服务接口,规范服务依赖关系。
系统架构演化历程-分布式服务
特征:
公共的应用模块被提取出来,部署在分布式服务器上供应用服务器调用。
描述:
随着业务越拆越小,应用系统整体复杂程度呈指数级上升,由于所有应用要和所有数据库系统连接,最终导致数据库连接资源不足,拒绝服务。
Q:分布式服务应用会面临哪些问题?
A:
(1) 当服务越来越多时,服务URL配置管理变得非常困难,F5硬件负载均衡器的单点压力也越来越大。
(2) 当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。
(3) 接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器?
(4) 服务多了,沟通成本也开始上升,调某个服务失败该找谁?服务的参数都有什么约定?
(5) 一个服务有多个业务消费者,如何确保服务质量?
(6) 随着服务的不停升级,总有些意想不到的事发生,比如cache写错了导致内存溢出,故障不可避免,每次核心服务一挂,影响一大片,人心慌慌,如何控制故障的影响面?服务是否可以功能降级?或者资源劣化?
Java分布式应用技术基础
分布式服务下的关键技术:消息队列架构
消息对列通过消息对象分解系统耦合性,不同子系统处理同一个消息
分布式服务下的关键技术:消息队列原理
分布式服务下的关键技术:服务框架架构
服务框架通过接口分解系统耦合性,不同子系统通过相同的接口描述进行服务启用
服务框架是一个点对点模型
服务框架面向同构系统
适合:移动应用、互联网应用、外部系统
分布式服务下的关键技术:服务框架原理
分布式服务下的关键技术:服务总线架构
服务总线同服务框架一样,均是通过接口分解系统耦合性,不同子系统通过相同的接口描述进行服务启用
服务总线是一个总线式的模型
服务总线面向同构、异构系统
适合:内部系统
分布式服务下的关键技术:服务总线原理
分布式架构下系统间交互的5种通信模式
request/response模式(同步模式):客户端发起请求一直阻塞到服务端返回请求为止。
Callback(异步模式):客户端发送一个RPC请求给服务器,服务端处理后再发送一个消息给消息发送端提供的callback端点,此类情况非常合适以下场景:A组件发送RPC请求给B,B处理完成后,需要通知A组件做后续处理。
Future模式:客户端发送完请求后,继续做自己的事情,返回一个包含消息结果的Future对象。客户端需要使用返回结果时,使用Future对象的get(),如果此时没有结果返回的话,会一直阻塞到有结果返回为止。
Oneway模式:客户端调用完继续执行,不管接收端是否成功。
Reliable模式:为保证通信可靠,将借助于消息中心来实现消息的可靠送达,请求将做持久化存储,在接收方在线时做送达,并由消息中心保证异常重试。
五种通信模式的实现方式-同步点对点服务模式
五种通信模式的实现方式-异步点对点消息模式1
五种通信模式的实现方式-异步点对点消息模式2
五种通信模式的实现方式-异步广播消息模式
分布式架构下的服务治理
服务治理是服务框架/服务总线的核心功能。所谓服务治理,是指服务的提供方和消费方达成一致的约定,保证服务的高质量。服务治理功能可以解决将某些特定流量引入某一批机器,以及限制某些非法消费者的恶意访问,并在提供者处理量达到一定程度是,拒绝接受新的访问。
基于服务框架Dubbo的服务治理-服务管理
可以知道你的系统,对外提供了多少服务,可以对服务进行升级、降级、停用、权重调整等 *** 作
可以知道你提供的服务,谁在使用,因业务需求,可以对该消费者实施屏蔽、停用等 *** 作
基于服务框架Dubbo的服务治理-服务监控
可以统计服务的每秒请求数、平均响应时间、调用量、峰值时间等,作为服务集群规划、性能调优的参考指标。
基于服务框架Dubbo的服务治理-服务路由
基于服务框架Dubbo的服务治理-服务保护
基于服务总线OSB的服务治理-功能介绍
基于服务总线OSB的服务治理
Q:Dubbo到底是神马?
A:
淘宝开源的高性能和透明化的RPC远程调用服务框架
SOA服务治理方案
Q:Dubbo原理是?
A:
-结束-

简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。
例如:
如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行改任务需10小时。
采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Reduce分布式计算模型)
而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,10小后,10个任务同时完成,这样,整身来看,还是1小时内完成一个任务!
以下是摘抄自网络文章:
一、集群概念
1 两大关键特性
集群是一组协同工作的服务实体,用以提供比单一服务实体更具扩展性与可用性的服务平台。在客户端看来,一个集群就象是一个服务实体,但事实上集群由一组服务实体组成。与单一服务实体相比较,集群提供了以下两个关键特性:
· 可扩展性--集群的性能不限于单一的服务实体,新的服务实体可以动态地加入到集群,从而增强集群的性能。
· 高可用性--集群通过服务实体冗余使客户端免于轻易遇到out of service的警告。在集群中,同样的服务可以由多个服务实体提供。如果一个服务实体失败了,另一个服务实体会接管失败的服务实体。集群提供的从一个出 错的服务实体恢复到另一个服务实体的功能增强了应用的可用性。
2 两大能力
为了具有可扩展性和高可用性特点,集群的必须具备以下两大能力:
· 负载均衡--负载均衡能把任务比较均衡地分布到集群环境下的计算和网络资源。
· 错误恢复--由于某种原因,执行某个任务的资源出现故障,另一服务实体中执行同一任务的资源接着完成任务。这种由于一个实体中的资源不能工作,另一个实体中的资源透明的继续完成任务的过程叫错误恢复。
负载均衡和错误恢复都要求各服务实体中有执行同一任务的资源存在,而且对于同一任务的各个资源来说,执行任务所需的信息视图(信息上下文)必须是一样的。
3 两大技术
实现集群务必要有以下两大技术:
· 集群地址--集群由多个服务实体组成,集群客户端通过访问集群的集群地址获取集群内部各服务实体的功能。具有单一集群地址(也叫单一影像)是集群的一个基本特征。维护集群地址的设置被称为负载均衡器。负载均衡器内部负责管理各个服务实体的加入和退出,外部负责集群地址向内部服务实体地址的转换。有的负载均衡器实现真正的负载均衡算法,有的只支持任务的转换。只实现任务转换的负载均衡器适用于支持ACTIVE-STANDBY的集群环境,在那里,集群中只有一个服务实体工作,当正在工作的服务实体发生故障时,负载均衡器把后来的任务转向另外一个服务实体。
· 内部通信--为了能协同工作、实现负载均衡和错误恢复,集群各实体间必须时常通信,比如负载均衡器对服务实体心跳测试信息、服务实体间任务执行上下文信息的通信。
具有同一个集群地址使得客户端能访问集群提供的计算服务,一个集群地址下隐藏了各个服务实体的内部地址,使得客户要求的计算服务能在各个服务实体之间分布。内部通信是集群能正常运转的基础,它使得集群具有均衡负载和错误恢复的能力。
二、集群分类
Linux集群主要分成三大类(高可用集群, 负载均衡集群,科学计算集群)
高可用集群(High Availability Cluster)
负载均衡集群(Load Balance Cluster)
科学计算集群(High Performance Computing Cluster)
具体包括:
Linux High Availability 高可用集群
(普通两节点双机热备,多节点HA集群,RAC, shared, share-nothing集群等)
Linux Load Balance 负载均衡集群
(LVS等)
Linux High Performance Computing 高性能科学计算集群
(Beowulf 类集群)
三、详细介绍
1 高可用集群(High Availability Cluster)
常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如"双机热备","双机互备","双机"。
高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。
2 负载均衡集群(Load Balance Cluster)
负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。
3 科学计算集群(High Performance Computing Cluster)
高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。
31 高性能计算分类 
311 高吞吐计算(High-throughput Computing)
有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME -- Search for Extraterrestrial Intelligence at Home )就是这一类型应用。这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。
312 分布计算(Distributed Computing)
另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。
四、分布式(集群)与集群的联系与区别
分布式是指将不同的业务分布在不同的地方;而集群指的是将几台服务器集中在一起,实现同一业务。
分布式中的每一个节点,都可以做集群。 而集群并不一定就是分布式的。
举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。
而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。
分布式的每一个节点,都完成不同的业务,一个节点垮了,那这个业务就不可访问了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13204593.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-20
下一篇 2023-06-20

发表评论

登录后才能评论

评论列表(0条)

保存