边缘计算是什么,和云计算的区别是什么

边缘计算是什么,和云计算的区别是什么,第1张

如果把云计算比作整个计算机智能系统的大脑。那么边缘计算就是这个系统的眼睛耳朵和手脚。核心服务器让智能系统具有很强的人工智能,但是如果这个人工智能是聋子瞎子,它也发挥不了太大的作用。
数据应用中常常面对的一个痛点,就是没有采集到合适的数据。边缘计算可以为核心服务器的大数据算法提供最准确,最及时的数据来源。
边缘计算和云计算的结合让整个智能系统不但头脑清楚,而且耳聪目明,手脚灵便。完全依赖云计算的计算机系统就好比每一件事都要请示司令部的军队,在需要大量和外界互动的时候会显得僵化,反应迟缓,而且一旦网络有点问题就彻底歇菜。
另外一个方面是:边缘计算和云计算是两个截然不同的事情,其中一个不会取代另一个。但目前太多的内容混淆了IT专业人士,提出边缘计算将取代云计算,这就相当于说PC会取代数据中心。
所有公有云提供商都具有包含或将边缘计算的物联网战略和技术栈。边缘计算和云计算可以在一起工作,但边缘计算是用于特殊需求的专用系统。云计算是一种更通用的平台,也可以在旧的客户端/服务器模型中与专用系统配合使用。

边缘服务器为用户提供一个进入网络的通道和与其它服务器设备通讯的功能,通常边缘服务器是一组完成单一功能的服务器,如防火墙服务器,高速缓存服务器,负载均衡服务器,DNS服务器等。

对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。

物联网应用

全球智能手机的快速发展,推动了移动终端和“边缘计算”的发展。而万物互联、万物感知的智能社会,则是跟物联网发展相伴而生,边缘计算系统也因此应声而出。

事实上,物联网的概念已经提出有超过15年的历史,然而,物联网却并未成为一个火热的应用。一个概念到真正的应用有一个较长的过程,与之匹配的技术、产品设备的成本、接受程度、试错过程都是漫长的,因此往往不能很快形成大量使用的市场。

根据Gartner的技术成熟曲线理论来说,在2015年IoT从概念上而言,已经到达顶峰位置。因此,物联网的大规模应用也开始加速。因此未来5-10年内IoT会进入一个应用爆发期,边缘计算也随之被预期将得到更多的应用。

边缘计算起源于传媒领域,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。
其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。
边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。
最近十次方平台有个送免费算力的事情不知道你知道吗,也是跟计算方面有关,不知道你了解过吗。

边缘计算指在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。(易迈云 推出企业0元购买云服务器的永久性活动 )雾计算和云计算一样,十分形象。云在天空飘浮,高高在上,遥不可及,刻意抽象;而雾却现实可及,贴近地面,就在你我身边。雾计算并非由性能强大的服务器组成,而是由性能较弱、更为分散的各类功能计算机组成,渗入工厂、汽车、电器、街灯及人们物质生活中的各类用品。
云计算的核心思想是"中心化",设想以后的终端自身不再需要高性能的CPU 、GPU、与存储空间,所有的终端都接入云端,每一面镜子、每一部手机都是云的入口,它们自身没有(不需要)计算处理数据,全部交给云端的计算中心来处理。接入端只是输入与输出。 这种设想是非常好,但是在未来很长的一段时间还是非常遥远的目标。
而现阶段最实用最落地的方案会是边缘计算(前后端混合运算)、去中心化的分布式计算、雾计算,所有的终端都可以成为分布式的计算节点,一个区链中的所有终端拥有平行的权限。目前这种设计思想在云桌面的开发中已经在应用。

“边缘计算”的概念本身并不是一个“新鲜词”。早在2003年,CDN服务商Akamai就与IBM合作推出了最早的“边缘计算”。如果以时间维度看,从亚马逊在2006年推出AWS看作是云计算的起点开始,那么它要比云计算被提出的时间更更加的早。
不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。
云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
云计算vs边缘计算
云计算的不足
随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 15GB 的数据。随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。海量数据的即时处理可能会使云计算力不从心。隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。
边缘计算的优势和发展
边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。
优势二:更靠近终端设备,传输更安全,数据处理更即时。
优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。

边缘计算是一种分布式计算架构,其基本思想是将计算和数据处理推向网络边缘,即在数据产生的地方或离数据产生地方最近的设备上进行计算和数据处理,以提高响应速度、降低延迟和减轻云计算中心的压力。边缘计算的本质是将数据处理从云端转移到离用户更近的边缘设备上,这些设备可以是智能手机、传感器、智能家居等智能设备。
边缘计算的实现需要依赖各种技术,包括网络连接技术、计算和存储技术、安全和隐私保护技术等。边缘计算的主要目标是实现低延迟、高可靠性和高效性,以满足实时计算和处理需求,同时减少数据在传输过程中的安全风险。
边缘计算的应用场景非常广泛,包括智能交通、智能制造、智能家居、物联网、机器人等领域。边缘计算在这些领域中能够实现快速响应、实时数据分析和决策、降低延迟和提高网络安全性,从而有望推动各种行业的数字化转型和智能化发展。

边缘计算是指在靠近物或数据源头的网络边缘侧,融合了网络、计算、存储以及应用处理能力的分布式平台,就近提供智能服务。和云计算的区别是:作用的不同。

边缘计算是云计算的一个逆 *** 作,云计算强调的是计算和存储等能力从边缘端或桌面端集中过来,而边缘计算则是将这种计算和存储等能力重新下沉到边缘。

边缘计算和云计算两者实际上都是处理大数据的计算运行的一种方式。边缘计算是对云计算的一种补充和优化,云计算把握整体,而边缘计算更专注局部。

云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。

云计算的核心概念就是以互联网为中心,在网站上提供快速且安全的云计算服务与数据存储,让每一个使用互联网的人都可以使用网络上的庞大计算资源与数据中心。

边缘计算(Edge Computing)是一种分布式计算架构,旨在将计算、存储和网络资源尽可能地接近数据的来源和终端设备,以提高数据处理的速度和效率,减少传输数据的延迟和网络带宽的消耗。与传统的云计算模型不同,边缘计算将计算放在离数据源更近的地方,例如在传感器、路由器或智能手机上。这种模型允许实时数据分析和响应,并在数据本地处理时减少数据的传输。
边缘计算的优点包括更快的响应时间、更高的数据安全性和隐私性、减少网络带宽的需求以及降低了与云服务交互的成本。边缘计算的应用场景非常广泛,包括智能家居、智能工厂、智能城市、医疗保健、农业等领域。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13213561.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-21
下一篇 2023-06-21

发表评论

登录后才能评论

评论列表(0条)

保存