服务器是计算机吗

服务器是计算机吗,第1张

是的。

服务器是计算机的一种,它比普通计算机运行更快、负载更高、价格更贵。服务器在网络中为其它客户机(如PC机、智能手机、ATM等终端甚至是火车系统等大型设备)提供计算或者应用服务。

服务器具有高速的CPU运算能力、长时间的可靠运行、强大的I/O外部数据吞吐能力以及更好的扩展性。根据服务器所提供的服务,一般来说服务器都具备承担响应服务请求、承担服务、保障服务的能力。

扩展资料;

服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可用的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面的要求较高。

在正常的网络环境下,根据服务器提供的服务类型不同,分为文件服务器,数据库服务器,应用程序服务器,WEB服务器等。

服务器的作用对于现代化的网络应用而言,可以说非常重要,离开服务器的支持,基本上所有的上网设备无法正常运转。服务器主要有两方面的作用:一是响应终端的服务请求,并进行处理。

在上网的时候是不可能直接将网络接入互联网的,我们都需要通过服务器来连接网络,只有服务器响应你的联网请求,并且进行处理以后才可以联网;二是存储的功能,服务器的存储空间一般比较充足,可以存储非常多的信息。

参考资料来源;百度百科-服务器

只要有用电的皆有辐射,服务器功率大的自然辐射大,只要机房的墙体符合机房装修的标准的话,隔墙的辐射不会太大;服务器主机辐射和普通电脑相比是大一些但是要看主要是键盘辐射都大,服务器主机会比普通电脑主机大一些,但是电脑相比还是键盘最大,然后是鼠标后是主机显示器,在关机和开机时辐射都会大,主机和显示器后面都有很强的辐射,但是主机侧面辐射也很大。

电脑CPU的评判标准可以根据CPU的主频和制造工艺等来评判。
1:主频:主频也叫时钟频率,单位是MHz(或GHz),用来表示CPU的运算、处理数据的速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系。CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。CPU的运算速度还要看CPU的流水线、总线等等各方面的性能指标。 主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
2:外频:外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈,下面的前端总线介绍谈谈两者的区别。
3:前端总线(FSB)频率:前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。
4:CPU的位和字长:位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
5:倍频系数:倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应-CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。
6:缓存:缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32-256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,现在笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
7:CPU扩展指令集:CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。
8:CPU内核和I/O工作电压:从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在16~5V。低电压能解决耗电过大和发热过高的问题。
9:制造工艺:制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm、65nm、45纳米。
总结:CPU也叫中央处理器,是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。

1、可扩展性

服务器必须具有一定的“可扩展性”,为了保持可扩展性,通常需要在服务器上具备一定的可扩展空间和冗余件(如磁盘阵列架位、PCI和内存条插槽位等)。

2、易使用性

服务器的易使用性主要体现在服务器是不是容易 *** 作,用户导航系统是不是完善,机箱设计是不是人性化,有没有关键恢复功能,是否有 *** 作系统备份,以及有没有足够的培训支持等方面。

3、可用性

可用性,即所选服务器能满足长期稳定工作的要求,不能经常出问题。服务器所面对的是整个网络的用户,而不是单个用户,在大中型企业中,通常要求服务器是永不中断的。为了确保服务器具有高的可用性,除了要求各配件质量过关,还可采取必要的技术和配置措施,如硬件冗余等。

4、易管理性

在服务器虽然在稳定性方面有足够保障,但也应有必要的避免出错的措施,以及时发现问题,而且出了故障也能及时得到维护。这不仅可减少服务器出错的机会,同时还可大大提高服务器维护的效率

服务器计算机最重要的特性包括:可扩展性、易使用性、可用性、易管理性

服务器要接受成千上万人的访问,所以这就要求服务器具有大数据量的快速吞吐、超强的稳定性、长时间运行的能力,CPU是计算机的大脑在服务器中亦然,它是衡量服务器性能的首要指标,目前,服务器的CPU 仍按CPU 的指令系统来区分,通常分为CISC 型CPU 和RISC 型CPU ,以及 64 位的VLIM指令系统的CPU。

服务器主板

服务器CPU

因为工作环境的关系,服务器CPU的设计都是以能够实现以年月为时间单位运行为前提,支持多路互联也就是说一台机器可以安装多个CPU,这样的 *** 作在消费级CPU上是不可能实现的,在接口方面也不像消费级那般单一。

但是在游戏体验方面服务器CPU是不如桌面级CPU的,因为其核心频率的原因,总的来说整体游戏优化不如桌面级CPU。

这两个各有所长,主要还是看自己的需求选择合适的CPU

一般来说,计算机系统性能有如下几种:
1)处理能力:一般包含计算速度、吞吐率、响应时间/平均响应时间。其中计算速度有峰值速度、持续可用速度、定点或浮点运算速度,计算速度是用来评价计算机尤其是高性能计算机的主要考量,如我们选购计算机时关注的CPU的主频,严格来说,CPU的主频与CPU实际的运算能力并没有直接关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等),虽然CPU的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的;吞吐率是单位时间内计算机系统完成的任务数,吞吐率越高,计算机系统的处理能力就越强;响应时间/平均响应时间是从计算机系统得到输入到给出输出结果之间的时间,一般用户比较关心,不过一般响应时间还和使用的软件有关。
2)可靠性:计算机系统正常工作的能力。它要求计算机系统首先是可靠的,或者一旦计算机系统发生故障,它应该具有容错的能力,再或者系统出错后能迅速恢复。通俗的将,即计算机系统最好不要出错,或者少出错,或者出错后能够及时恢复工作状态。由于计算机系统由硬件和软件组成,它们对整个系统的可靠性影响呈现完全不同的特性:硬件和一般人工产品的机件一样,时间一长就要出毛病。软件则相反,时间越长越可靠。因为潜藏的错误(Bug)陆续被发现并解决,它又没有磨损、氧化、松动等问题。所以,计算机的可靠性是指分别研究硬件的可靠性和软件的可靠性。
3)利用率:即在一段时间内被使用的时间(次数)占总时间(总使用次数)的百分比,有硬件利用率、软件利用率、指令利用率等。提高计算机硬件性能利用率多半是对服务器而言,比如很多不同目的的服务器,大部分时间只使用了30%左右的硬件资源,剩余的都是闲置的。目前一般采用VM等虚拟化技术提高计算机利用率。
4)易用性:计算机系统方便用户使用的用户感知度,这是用户选购计算机系统时会考虑的重要指标,通常是对软件系统来说的,比如Windows和Unix的区别,一般用户肯定倾向于使用Windows系统,只有专业人士或者要求安全性高的用户会使用Unix系统。
5)功耗及对环境的要求:对于特殊环境下使用的计算机系统尤其重要,如军用、航天计算机、水下计算机等。计算机系统设计人员也需要考虑对环境的因素,如电压是否稳定等。

TPC-C的过程调用,平均每个新订单需要执行222次。 TPC-E的过程调用,平均每次交易有254次。 选择配置相同的HP DL580 G5与IBM x3850,配置4颗四核Xeon X7350 293GHz处理器,由于是四路四核,所以处理器数量是16。 计算方法是Average CPU-sec/call=处理器利用率×处理器数量/SQL Batches/sec, TPC-C测试结果:每秒执行407,079 TPM-C /60Sec=6785次交易,由于每次交易要做222次调用,也就是说每秒钟可执行6785×222=15,062次SQL Batches批处理。 TPC-E的测试结果是47951TPS-E(每秒完成交易次数),相当于47951×254=12,180次SQL Batches批处理。 由此可见,TPC-E看的不仅仅是CPU的性能,服务器系统设计、 *** 作系统与数据库软件、存储架构等都非常关键,除了一般的 *** 作外,还包含了多表连接查询,更加复杂。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13221593.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-22
下一篇 2023-06-22

发表评论

登录后才能评论

评论列表(0条)

保存