选择数控系统中必须考虑哪些因素?

选择数控系统中必须考虑哪些因素?,第1张

数控系统的功能适用性对于数控机床的设计选型无疑是重要的限制性因索。以下因素是在选择数控系统中必须考虑的重要因素。
1、驱动能力
不同的数控供应商的解决方案中伺服的功率范围和配套电机范围也是不同的。首先应该从可匹配的电机类型,功率范围来初步筛选。特别是要注意数控机床方案中是否包括力矩电机、直线电机、电主轴属于同步电主轴还是异步电主轴,上述电机的额定电流需求和过载电流需求,电主轴的最高转速需求等。
2、全闭环需求与双驱需求
数控机床,特别是大型、重型数控机床大多数都有全闭环和双驱需求。在全闭环控制方案中,要在距离编码光栅、绝对值式光栅、普通增量光栅间进行选择,同时数控系统也要支持相应的反馈信号接入。
3、五轴控制需求
五轴机床需要明确是否五轴联动还是仅要求五面加工,相应选择数控系统功能也不同。比如针对五面箱体类加工,通常不需要RTCP,选择余地就比较大。同时针对五轴功能可能涉及数控系统供货商在出口许可证、售后服务、技术支持等也必须认真考虑。
4、生产系统需求
数控系统网络化支持成为生产系统集成的必要条件。对于要纳入自动化程度很高的生产系统的数控机床,必须明确数控系统具有相应的接入解决方案,包括低级的依靠PLC输入输出点直接接入到高级的数控系统内置OPC服务器,依照OPC标准向用户开放数控系统内部数据。此外面向生产系统,自动化的在线工件检测和刀具检测也是必须支持的功能。
数控系统是数字控制系统的简称,英文名称为(NumericalControlSystem),根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置的专用计算机系统。通过利用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制,它所控制的通常是位置、角度、速度等机械量和开关量。

使用CNC系统连接。

通过系统控制软件配合系统硬件,合理地组织、管理数控系统的输入、数据处理、插补和输出信息,控制执行部件,使数控机床按照 *** 作者的要求进行自动加工。CNC系统采用了计算机作为控制部件。

通常由常住在其内部的数控系统软件实现部分或全部数控功能,从而对机床运动进行实时控制。只要改变计算机数控系统的控制软件就能实现一种全新的控制方式。CNC系统有很多种类型,有车床、铣床、加工中心等CNC系统。

扩展资料:

将编写好的加工程序输入数控系统,就可控制数控机床的加工工作。一般在正式加工之前,要对程序进行检验。通常可采用机床空运转的方式,来检查机床动作和运动轨迹的正确性,以检验程序。在具有图形模拟显示功能的数控机床上。

可通过显示走刀轨迹或模拟刀具对工件的切削过程,对程序进行检查。对于形状复杂和要求高的零件,也可采用铝件、塑料或石蜡等易切材料进行试切来检验程序。通过检查试件,不仅可确认程序是否正确,还可知道加工精度是否符合要求。

若能采用与被加工零件材料相同的材料进行试切,则更能反映实际加工效果,当发现加工的零件不符合加工技术要求时,可修改程序或采取尺寸补偿等措施。

参考资料来源:百度百科-计算机数控

实施DNC系统,需要有相应的规划并且要应用现代化的数控设备和网络化的信息系统,才能达到制造过程数字化的较高水平。在实施前,根据自己工厂内的数控设备情况,因地制宜的进行实施。
首先要具备数字化终端,并且能够实现数据的双向通信,如果自身带有智能管理功能实施起来效果会更加的好。
第二,工厂的基础网络能够将所有要建设数字加工中心的位置进行覆盖,能够将自动化化生产设备进行有效链接,接入公司的局域网中。
当以上两个步骤完成之后,可以与公司内部实施的ERP/MES/PDM/MDC/Trcaker/NC Crib系统进行集成,对企业车间进行全方位的网络化管理,提高企业生产效率和生产能力。

盖勒普DNC系统已经拥有20多年技术沉淀和10多年国内信息化实施经验。长期从事制造企业的车间信息化管理服务,全球领先的数控设备及工位智能化联网管理系统DNC在各大行业的制造企业得到推广和应用。通过企业信息化建设的积累,锻炼了一支熟悉企业管理流程、技术扎实、服务热情的队伍。
盖勒普DNC主要功能:
1台服务器支持4096台设备同时联网在线
只需使用1台DNC服务器就可以同时联网管理4096台生产设备及工位,并且支持多线程(Multi-thread)双向数据通讯功能,覆盖生产现场的所有设备统一联网和管理。
全自动远程请求 ─ DNC 服务器无人值守
在此平台,设备 *** 作人员可以在设备端直接下载和上传NC程序,车间的技术和管理人员在办公室就能够直接共享车间数据及文档,避免了人员在设备与办公室之间的来回奔波,整个过程将变得更加便捷,生产管理将变得更有效率。
NC 程序统一管理及追溯
车间人员无需再吃力地拿着U盘、软盘、CF 卡来传输NC 程序,通过DNC即可实现所有NC程序的统一管理,且让程序的每一次流转及更改都能够追溯到人。
100% 数控设备兼容性 & 100% 硬件兼容性
几乎兼容世界上所有的数控设备控制器,并且同时可识别这些设备的通讯接口及通讯硬件。
嵌入式集成接口 ─ 车间数据智能化共享
功能自定义和系统集成应用的嵌入式编程模块,支持VB Scrip和JAVA Script 两大编程语言, DNC应用功能的扩展不受限制。
盖勒普DNC全球领先技术:
1Server Safe™ DNC网络系统安全技术
DNC™ 具有Server Safe™ 的服务器安全功能,即使DNC网络在通讯期间发生崩溃,Server Safe™ 功能可以让传输的数据暂时缓存在PC 内存中,使得DNC网络依然能够维持通讯,避免了在DNC传输中因为网络不稳定而造成的传输中断和数据丢失,这些可靠的技术已经成为Predator DNC™ 系统在全球行业内技术绝对领先的关键特点之一。
2DNC™ 的后台运行技术
是否担心Predator DNC™ 会像其他老的DNC一样不能同时支持多台设备的传输任务?Predator DNC™ 能够支持多达4096台设备同时进行通讯任务。运行Predator DNC™ 就像运行一个Windows 的后台服务一样,通过计算机的双核或者四核的运行能力,灵活地调整对系统资源的占用,完全能够支持同时处理大量的设备在线通讯,让制造业告别传统的DNC传输技术。
3生产现场工作中心数据采集集成(MDC/MES Integration)
DNC™ 内嵌生产现场及工位数据采集和设备状态监控数据流接口通道,支持Access、SQL Sever和Oracle三大开放式关系型数据库。MES系统的生产现场数据采集可以实现通过DNC网络直接进入数据库进行存储。目前Predator DNC™ 是国内唯一能够与MRPII/ERP/MES有真正数据集成技术能力和应用案例的DNC系统。
等等,希望采纳哦!

虚拟数控加工过程物理仿真模型的建立

摘要:该文首先阐述了虚拟数控加工过程物理仿真的研究内容,其次重点讨论了所建立的切削力仿真,刀具磨损仿真与变形仿真,加工误差仿真,振动仿真和切屑形成过程仿真的数学模型。最后,提出了物理仿真今后研究的方向。

1 引言

虚拟数控加工(VNC)过程物理仿真是虚拟制造(VM)单元和虚拟制造系统基础核心技术,越来越受到各国学者的重视。虚拟数控加工过程的仿真包括数控(NC)代码仿真,几何仿真和物理仿真。数控代码仿真是虚拟数控加工过程的一个重要环节,通过它可以检查数控程序的正确性及实现碰撞、干涉检验,大大节省数控程序的调试时间,减少昂贵的试切用度,进步数控机床的安全性等。几何仿真是数控加工过程仿真的条件,通过刀具扫略体和工件模型连续的布尔运算可得切屑的往除加工过程仿真,它也提供了物理仿真评估切削力和加工误差所需的主要参数。物理仿真主要是力学仿真,它是虚拟数控加工过程仿真的核心部分,其内涵就是综合考虑实际切削中的各种因素,建立与实际切削拟合程度高的数学模型,从真正意义上实现虚拟加工与实际加工的“无缝连接”,满足虚拟数控加工的沉醉感和交互性。只有对物理仿真的机理研究透彻,才能真正意义上的满足虚拟制造的目的即实际加工过程在计算机上的真实映射。

2 物理仿真的研究内容体系

物理仿真的主要内容包括切削力仿真、加工误差仿真、切屑的天生过程仿真、刀具的偏移、变形和磨损仿真、及数控切削机床的振动与温度仿真等。其仿真体系结构。

3 虚拟数控加工物理仿真的模型

31 切削力仿真模型

在切削力的仿真中,关于切削力的模型,有人以为,刀具受的切削力可以看做是单位时间材料往除率的函数。首先在刀具上建立笛卡儿坐标系,刀刃上受到三个正交力。

Ft=KtSt      Fr=KrSr      Fa=KaSa (1)

式中:St、Sr、St——切屑在三个坐标平面上的投影面积。

Kt、Kr、Ka——从金属切削中得到的材料和切削速度参数。

上述切削力仿真的方法经过SJayaram的研究对于三轴以上的数控机床切削力误差较大,因此此仿真方法只适应于三轴和三轴以下的数控机床的切削力仿真。

Hirohisa基于刀具沿轴向的切削力均匀分布假设的基础上提出了一种将刀具分成很多部分的切削力仿真模型。本文在此基础上利用有限元法(FEM)建立切削力模型,将刀具切削刃划分成若干微元对其中一个微元做受力分析。那么由第j个刀具微元的切向力dFtj(θ, z),径向力dFrj(θ, z)和轴向力dFaj(θ, z)可以得出基本的切削力。

dFtj(θ, z)=[Kte+Ktchj(θ, z)]dz=[Kte+KtcStsinθj]dz

dFrj(θ, z)=[Kre+Krchj(θ, z)]dz=[Kre+KrcStsinθj]dz

dFaj(θ, z)=[Kae+Kachj(θ, z)]dz=[Kae+KacStsinθj]dz (2)

上式中Kte、Kre、Kae,Ktc、Krc、Kac代表切削系数,可由切削测试中的各种进给速度得出。hj(θ, z)=Stsinθj是未切削工件的厚度。dz是刀具的轴向长度微分。St每一刀具微元的进给量。上面(2 )式通过求解微分方程可得出刀具在三个方向的瞬时切削力。刀具在三个方向的受力总和通过所有微元在x、y、z方向瞬时切削力的总和求出。

32 加工误差的模型

工件加工误差受到很多因素的影响,这给加工误差仿真带来了很多困难,由于要精确仿真出加工误差,不但要考虑每一单项因素对加工误差的影响而且还得综合考虑各因素的权重。CAnderssson对定位误差和刀具磨损对工件精度的仿真模型分别作了较为具体的研究,Huaizhong Li对机床热变形和振动对工件加工误差的模型作了深人的研究等。影响加工误差的因素还包括机床运动精度误差、刀具尺寸误差以及主轴偏移、导轨变形、夹紧力、刀具、零件热变形和d性变形误差及加工方法引起的误差等。基于上述研究对这些单项误差按模糊理论进行模糊综合评判得出影响工件加工精度的总误差模型。

(3)

式中,x(t)、y(t)、z(t)为时刻t 是工件表面上天生点的位置,Wi表示第i个误差叠加时的权重,Ei[x(t), y(t), z(t)]表示第i个误差在时刻t 的误差值。上式又可表达为影响刀具位置和姿态的自变量为时间t的误差函数:

(4)

这样可以在虚拟加工中融人误差并方便的计算出时间t时工件上某点的加工误差。然后将产品的理论模型与毛坯往除材料后得到的加工模型求差可得加工误差模型。在VNC 机床加工过程中,加工误差模型按误差大小用不同的颜色表示加工区域,通过对其进行检查,可对加工误差的大小及其可能产生的原因进行分析评判,并为产品的可制造性评估提供依据。

33 切屑天生过程的模型

切屑天生过程的实时仿真是虚拟数控加工与实际加工“无缝连接”和同步显示的主要环节切屑的天生、卷取、折断以及天生的外形受到很多因素的影响,比如与刀具的几何外形、切削液、工件和刀具的材料工件和刀具间的摩擦力以及应力厂司和应变阔、切屑的天生机理和热变形等因素有关,这一研究结果已被很多学者采用。CAndersson的研究发现当切屑的厚度非常小时(小于2μm)切屑的厚度与切削力是线性关系,关系式为:

Cr=Fr/[(nz+1)·h1n·b1i (5)

由于已经证实了FH和h1n之间的线性关系,所以用Cr代替关系式中的FH得到:

Cr=Cr1+Cr2/H1n (6)

式中,Cr为主切削力,Cr1, Cr2为切削力的系数常量,H1n切屑厚度。

但这一方面研究仍在继续深进。CIRP工作组在1998年的Keynote Paper中的建议从以下几个方面进一步加强研究。

对切削和切屑形成的机理及毛边和碎片的控制、抑制方法作进一步深人的研究。

加强有限元法(FEM)、混沌理论(Choas Theory)、人工神经网络(ANN))、及遗传算法(GA)在切屑天生机理和仿真中应用的研究。

规范切屑的结构分类和标准建立全球同一的切屑试验参数数据库。

34 刀具的磨损和偏移

刀具的磨损模型

刀具的磨损仿真是估算刀具寿命的有效方法,它可以省往繁杂的切削试验既经济又省时,它也是选择刀具与切削条件的有洲衣据。根据硬质渗碳钢在数控铣床上的切削实验,刀具的磨损既有坑状磨损又有平面磨损。实验数据表明每单位进给间隔和单位面积的刀具磨损体积dw/dl与切削温度θ和压应力σ有关,即:

dw/dl=c1σtexp(-c2/θ) (7)

式中c1、c2是切削的特征常数,θ是切削的尽对温度。

刀具的变形模型

在磨削刀具变形模型中,刀具的线性变形和非线性变形都应考虑到。为了便于分析在此使用一般的固体力学模型假设切削力作用在刀尖部分。从丈量刀具的变形可以得出刀具和刀具夹头间的接触面积对刀具的变形起很大作用,刀尖到刀具间隔为z的每一点的线性变形都能按下式计算。

εx(z)=Eh·Fx+Er·My(l-z)

εy(z)=Eh·Fy+Er·Mx(l-z) (8)

上式中Fx和Fy是切向力在x, y向的分力,Er和Eh是平移和旋转的系数常量,可通过实验得到,Mx和My刀尖部位的切削力产生的力矩。

Mx=Fy·l         My=Fx·l (9)

由于端磨刀具的非线性变形可以被简化成悬臂梁模型,刀具沿z轴的非线性变形按下式计算。

δx(z)=Fx·(l-z)2·(2l+z)/6EJ

δy(z)=Fy·(l-z)2·(2l+z)/6EJ (10)

那么,刀具在沿z轴任意点的总变形可从下式中得到:

Dx(z)=εx(z)+δx(z)    Dy(z)=εy(z)+δy(z) (11)

35 加工温度模型

磨削和车削的加工过程是连续变化的,持续型的加工温度模型Huaizhong Li已经给出即

Tstatic=T[1-v lg(ε/ε0)] (12)

式中T 是切削点的温度,v是给出的材料参数常量,ε是应变率,ε0是材料特性不受影响的临界应变率。

铣削是间歇切削过程不能直接将(12)式用于铣削加工的温度仿真。在间歇切削中切削温度的预热传递过程随切削时间T(t)变化,为到达与持续切削相同的平稳状态,Tstatic必须考虑。下面给出预热传递过程的温度模型:

T(t)=Tstaticexp(τ/t)+Tmin (13)

式中:τ是常量,t是一个周期中每一铣齿的切削时间;Tmin和Tp是切削周期中的最小和最高温度。

Tmin=Tpexp(-t2/τ)

Tp=Tstatic·[exp(-τ/t1)/(1-exp(-t2/τ))] (14)

式中t1、t2分别指一个周期中切削和非切削时间,由于刀具的旋转周期是60/nR(S),所以有

t1=(60/nR)·(Øgx-Øst)/2π

t2=(60/nR)·[1-(Øgx-Øst)/2π] (15)

式中Øgx、Øst分别指铣削时铣刀的切进角和离开角。

在铣削中切削区的温度首先使用式(12)计算持续切削温度,然后通过(13)~(15)式修正。

36 振动模型

在大多数模型中,仅考虑静态切削力动力可能引起的振动也将影响工件的加工表面精度。对振动的实时仿真可以提供避免或减少振动的依据公道地选择加工条件。在这方面学者已做了大量工作并建立了主要的仿真理论。但存在的题目是很多重要的变量参数难以丈量且丈量精度也难以保证。有两方面数据非常重要:

赖于机床、工件及刀具和随切削力向量的位置和方向变化的系统的动力学参数。

与切削力相关的加工材料、刀具外形和材料、切削状况、刀具磨损类型和磨损量等变化的动力学行为。

一个二自由度铣削振动模型,在此模型中假设振动方向是沿相互垂直的X和Y方向,且进给方向是沿X轴。座标系被固定在NC铣床上,轴与主振幅对齐,铣刀有n个齿且均匀分布。铣刀系统的振动模型由下面微分方程给出:

(16)

式中m、c、k是铣床仿真模型在X、Y方向的质量、阻尼系数和d簧刚性系数,Fxj和Fyj是第j个铣齿上的铣削力在x、y向的分力,n是铣刀的齿数。

37 摩擦力模型

切屑和刀具面的摩擦力影响着切屑的外形、系统的温度等物理仿真中的很多因素摩擦力在刀具切削刃进进工件到离开工件的时间内是变化的,切削摩擦力的大小与系统的温度、工件和切屑的塑性变形等之间有相互影响、非常复杂的关系,这就要求收集临界点的数据,建立切屑参数数据库以便更好的建立摩擦力仿真模型,有效控制摩擦力。方程(17 ) 给出了非线性摩擦力仿真模型。

τt/k=1-exp(μσt/k) (17)

式中τt和&sogma;t是刀具面的摩擦力和正压力,k是切屑的剪切力系数,μ是材料的特征参数常量。

4 小结

物理仿真模型的建立是物理仿真的基础与关键。在很多方面已经做了大量的工作,也取得了一定的进展,但笔者以为,现有的VNC加工过程仿真系统不能给用户精确的结果,很唯实现VM的交互性与沉醉感,模型的研究仍有待进一步完善。因此为了使仿真模型的定量计算与实际加工相同,笔者建议必须从以下四个方面加强物理仿真的研究。

实验方面:建立物理仿真全过程的切削实验参数数据库。

机理方面:仿真机理与实际加工机理及两者之间的进一步藕合关系。

仿真领域:向高速切削、硬质合金切削的物理仿真及微细切削的分子力仿真领域扩展。

仿真方法:仿真手段和方法的多样化,如有限元法(FEM)、人工神经网络(ANN)等。

-----------------------------------------

数控铣床加工过程虚拟仿真系统的设计

建立一个真实的数控铣床加工环境,并在此环境下对加工过程进行仿真。对虚拟制造的体系结构和相关技术进行了深入的研究和分析、着重阐述了虚拟数控机床的建模原理及其相关的控制技术,在建立的虚拟数控机床上实现机床各轴的运动控制、程序显示、NC编译、反馈信息显示等功能,实现了虚拟数控铣床最基本的功能。 本系统的目标是建立一个真实的数控加工环境。在这个环境中,需要建立机床模型和加工过程模型。机床模型就是整个加工过程的物理环境,将真实的机床在计算机中以3D画面的形式出现;加工过程模型是一个动画过程,模拟真实机床、刀具、切削等加工过程的运动。  该系统应满足的要求:  1)具有逼真的加工环境; 2)能够对NC代码等进行检测,即具备机床的NC程序编译功能,能发现NC程序的错误,并生成目标文件; 3)能够显示刀具轨迹及切削过程; 4)能调整、修改机床状态参数,实时监控机床的运动状态; 5)有友好的人机界面,能方便用户 *** 作。  它具备的特点有:  1)环境真实,系统的环境和真实的机床环境尽量相同; 2)功能一致,系统的功能要和机床的功能一样; 3)较强的纠正错误能力,能发现各种错误同时给出报警信息; 4)快速完成仿真过程,仿真加工过程需要的时间不能和真实的加工时间一样,否则让人难以忍受,加工过程时问可以根据用户的要求来进行调节。  1 本系统整体构架  仿真过程为:在控制面板上编辑NC程序或调入NC程序,然后对准备好的加工程序进行检查,轨迹仿真,确认无误,准备加工。加工前对整个系统进行必要的设置,刀具参数设置,工件坐标系设置等。进行加工时,显示机床运动动画及工件切削动画,对机床状态进行监测,显示监测的信息,如果有非法 *** 作、越程等信息,发出相应的警报。  系统分为五个模块:人机界面、几何模块、运动模块、编译模块和监测反馈模块。整个系统的模块划分如图l所示。 人机界面用来实现人机交互,即机床的控制面板;几何模块用来实现系统的物理环境,刀具轨迹及工件模型等几何体;NC模块主要功能有数控程序编辑、刀补、插补、编译生成虚拟机床驱动文件等;运动模块用来实现虚拟机床运动,刀具运动及切削运动等;机床参数设鬣、机床状态信息反馈与监测等功能用监测反馈模块来实现。整个系统各个模块关系如图2所示。 2 各个模块的设计  2.1 人机界面(控制面板)的设计  这个模块有两个方面: 一是对面板的各个界面元素进行设计,一一个是对机床等各个虚拟物体进行控制。 *** 作面板上的组件数量很多,但大多数都具有相似性,因此可以将具有相同功能的组件设计为ActiveX控件,利用ActiveX控件的封装性和动态连接性来实现虚拟 *** 作面板上的具有相同功能的组件。界面元素构建三个类CRob、CMyButton、CMyEdilo CRob是用米实现旋转开关。CMyEdit用于实现显示屏。CMyBunon来实现方形按钮。几乎所用的 *** 作,控制都在控制面板上,那么所有的模块都在这里汇集,可以是指针、实体,用来实现整个机床及加工过程的控制。设计一个NcPanel类,这个类提供各个控制变量,用于NC文件检查,机床参数设置,机床运动控制等等。 2.2 几何模块的设计  2.2.1 机床本体模型、刀具模型、切削液喷管等复杂几何模型  这峰模型比较复杂,直接采用绘图编程的方法很难实现这么复杂的图形,即使实现了也需要花费极大的时间和精力,绘制出来的效果也难以达到预期效果。本文采用一些成熟绘图应用软件如3dsMax、UG、Pro/E等来实现这些几何模型。本系统并不能直接调用这些软件生成的几何模型,只能得到这些几何模型的描述性文件。不得不对这些文件进行研究,找出需要的几何信息,然后转化成程序中能够使用的几何实体。有一种标准的文件格式--3DS文件格式,几乎所有的3D绘图软件都支持这种文件格式,能转化成这种文件格式。因此,这个模块的工作便是编写一个文件接口,将3DS二进制文件读入转换成0penGL几何实体。构建的类如下:  class C3dsReader;//3DS文件读人类 class8 CTriList;//生成数据链表(用来逼近3DS图形的小三角形片//集合)  将机床各个部件几何模型组成一个机床类class Machine,这个类包括机床的各个组件,如床身、主轴等。  2.2.2 刀具轨迹及零件几何模型  此模块用于刀具轨迹仿真,验证NC程序是否正确及显示加工后刀具轨迹几何模型,可划分为两层:  第一层:基本几何元素层。 点,线,圆弧,平面,直纹面面等几何元素的绘制,点,向量,矩阵的各种运算等。在0penGL环境中,可以相似地构造出一个设备环境类,让它绘制出一些基本的几何元素:直线、圆弧等。 第二层:模型建立层。  整个NC文件形成的刀具轨迹是由各种几何元素构成的,建模即是将各种几何元素构成一个完整的图形。如加工一个字,字体则是由多条直线构成。从中可以构建各个几何模型的类如直线(CLine),圆弧(CAre),圆(CCircIe),直纹曲面(CLin_Are)等。各个无素的绘制则调用上一层glCDC类的成员函数。如直线自我绘制可以写成:  pDC->Line(start,end); pDC是glCDC一个实例的一个指针。  2.2.3 工件模型  工件模型用于工件切削运动。采用空间分割法对工件模型进行建模。本文只将工件在X、Y平面上进行分割,Z方向用top值表示,构建的模型的如下:  class PexSeL//离散的小方块实体模型  整个工件可表示为:PexSel Box[x][y];//x,y为工件分辨率  2.3 运动模块的设计  运动模型有机床本体运动,刀具运动,加工切削运动,属于动画制作过程。动画可以让一张张相关的以较快的速度进行切换,就能得到连续的运动效果。相似地,在一定地时间里绘制N张相关的,就能得到计算机动画效果。先设置一个系统时间,让它不停的刷新画面,接下来的工作就是绘制这些相关的。  图形的绘制,把它封装成按参数化形式绘制,只要将其参数进行修改就可以实现动画控制。  比如一个正方体绘制可写成:  Translated(m_x,m_y,m_z);// DrawBox(length,width,high);  那么只要对m_x,m_y,m_z三个变量进行控制,然后让画图模块不停地按参数绘制即可实现正方体移动动画。接下来的工作需按时间对位置变量进行控制,实现需要的运动。设计一些位置控制器,如直线、圆弧位置控制器等  cIass MoveCircle//实现圆弧运动计算器 class Movenne //实现直线运动计算器 ……  2.4 编译模块的设计  编译模块主要划分为四个部分:词法分析、语法分析、目标代码生成和出错处理。编译过程是输入数控加工程序,输出目标代码或错误信息。本系统采用逐行扫描方式,以词法分析程序和语法分析程序为核心,出错处理作为一个独立的过程,目标代码的生成则在错误为零的情况下生成。  设计一个编译类Compile。 输入:CString m_Nccode;//一段NC代码 功能函数: Wo-check( ) //词法检查 SyntaxCheck( )//语法检查 输出:CString errInfo//错误信息  *** 作数据对象 ProgramNode NcSegementStruct//编译后生成的中间文件。 CTypedPtrList<C0bList,CPart>m_curvelist;//生成的刀具轨迹链表  2.5 监测反馈模块的设计  机床参数系统的没计:  1)设计一个后台数据库CDaoDatabase m_db,后台数据库使用微软公司的ACCESS制作; 2)所有的变量设计一个MachineState类来集中进行管理。 3)状态监测,设计一个类RunErrCheck,实现功能包括非法报警、工件与刀具干涉、非法 *** 作和越程等。  3 小结  数控加工过程本身是一个十分复杂的过程,它是对零部件设计、工艺规划等许多工作的一个检验。本文建立的系统已经具备虚拟机床的基本功能,仍然存在以下几个需要改进的地方:  1)工件模型可以进一步进行研究,找出结构更优秀,显示速度更快的模型,使得切削过程更加逼真、快捷; 2)运动模型需要进一步研究,构造更强大的运动控制器,如高级曲线运动控制、高级曲面运动控制,以满足更高级CNC系统刀位控制要求; 3)本系统只研究了纯几何仿真,对于加工中一些力学因素没有考虑,今后可通过建立加工过程的力学物理仿真模型,进行加工过程切削性能与切削效果仿真。

楼上那一位加上以下的,自己整合一下
1、PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:
“PLC是一种专门为在工业环境下应用而设计的数字运算 *** 作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等 *** 作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”
PLC的特点
21可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。
22配套齐全,功能完善,适用性强
PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
23易学易用,深受工程技术人员欢迎
PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。
24系统的设计、建造工作量小,维护方便,容易改造
PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。
25体积小,重量轻,能耗低
以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。
3 PLC的应用领域
目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。
31开关量的逻辑控制
这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。
32模拟量控制
在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。
33运动控制
PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。
34过程控制
过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。
35数据处理
现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位 *** 作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制 *** 作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。
36通信及联网
PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。
4 PLC的国内外状况
在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable ,是世界上公认的第一台PLC
限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。此时的PLC为微机技术和继电器常规控制概念相结合的产物。个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。
20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。20世纪80年代初,可编程控制器在先进工业国家中已获得广泛应用。这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。
上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。
我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国自己已可以生产中小型可编程控制器。上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的PLC生产厂家。可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。
5 PLC未来展望
21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。
12 PLC的构成
从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。
13 CPU的构成
CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。
CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。
在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。
CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。
14 I/O模块
PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。
常用的I/O分类如下:
开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。
模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。
除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。
按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。
15 电源模块
PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。
16 底板或机架
大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。
17 PLC系统的其它设备
171
编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。也就是我们系统的上位机。
172 人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式 *** 作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。
18 PLC的通信联网
依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。因此,网络在自动化系统集成工程中的重要性越来越显著,甚至有人提出"网络就是控制器"的观点说法。
PLC具有通信联网的功能,它使PLC与PLC
之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。PLC的通信现在主要采用通过多点接口(MPI)的数据通讯、PROFIBUS
或工业以太网进行联网。
2 PLC控制系统的设计基本原则
21 最大限度的满足被控对象的控制要求。
22 在满足控制要求的前提下,力求使控制系统简单、经济、使用和维护方便。
23 保证控制系统安全可靠。
24 考虑到生产的发展和工艺的改进在选择PLC容量时应适当留有余量。
3 PLC软件系统及常用编程语言
31 PLC软件系统由系统程序和用户程序两部分组成。系统程序包括监控程序、编译程序、诊断程序等,主要用于管理全机、将程序语言翻译成机器语言,诊断机器故障。系统软件由PLC厂家提供并已固化在EPROM中,不能直接存取和干预。用户程序是用户根据现场控制要求,用PLC的程序语言编制的应用程序(也就是逻辑控制)用来实现各种控制。STEP7是用于SIMATIC可编程逻辑控制器组态和编程的标准软件包,也就是用户程序,我们就是使用STEP7来进行硬件组态和逻辑程序编制,以及逻辑程序执行结果的在线监视。
32 PLC提供的编程语言
321 标准语言梯形图语言也是我们最常用的一种语言,它有以下特点
3211 它是一种图形语言,沿用传统控制图中的继电器触点、线圈、串联等术语和一些图形符号构成,左右的竖线称为左右母线。
3212 梯形图中接点(触点)只有常开和常闭,接点可以是PLC输入点接的开关也可以是PLC内部继电器的接点或内部寄存器、计数器等的状态。
3213 梯形图中的接点可以任意串、并联,但线圈只能并联不能串联。
3214 内部继电器、计数器、寄存器等均不能直接控制外部负载,只能做中间结果供CPU内部使用。
3215 PLC是按循环扫描事件,沿梯形图先后顺序执行,在同一扫描周期中的结果留在输出状态暂存器中所以输出点的值在用户程序中可以当做条件使用。
322 语句表语言,类似于汇编语言。
323 逻辑功能图语言,沿用半导体逻辑框图来表达,一般一个运算框表示一个功能左边画输入、右边画输出。
4 STEP7程序的使用
41 创建一个项目结构,项目就象一个文件夹,所有数据都以分层的结构存在于其中,任何时候你都可以使用。在创建一个项目之后,所有其他任务都在这个项目下执行。
42 组态一个站,组态一个站就是指定你要使用的可编程控制器,例如S7300、S7400等。
43 组态硬件,组态硬件就是在组态表中指定你的控制方案所要使用的模板以及在用户程序中以什么样的地址来访问这些模板,地址一般不用修改由程序自动生成。模板的特性也可以用参数进行赋值。
44 组态网络和通讯连接,通讯的基础是预先组态网络,也就是要创建一个满足你的控制方案的子网,设置网络特性、设置网络连接特性以及任何联网的站所需要的连接。网络地址也是程序自动生成如果没有更改经验一定不要修改。
45 定义符号,可以在符号表中定义局部或共享符号,在你的用户程序中用这些更具描述性的符号名替代绝对地址。符号的命名一般用字母编写不超过8个字节,最好不要使用很长的汉字进行描述,否则对程序的执行有很大的影响。
46 创建程序,用梯形图编程语言创建一个与模板相连结或与模板无关的程序并存储。创建程序是我们控制工程的重要工作之一,一般可以采用线形编程(基于一个块内,OB1)、分布编程(编写功能块FB,OB1组织调用)、结构化编程(编写通用块)。我们最常采用的是结构化编程和分布编程配合使用,很少采用线形编程。
47 下载程序到可编程控制器,完成所有的组态、参数赋值和编程任务之后,可以下载整个用户程序到可编程控制器。在下载程序时可编程控制器必须在允许下载的工作模式下(STOP或RUN-P),
RUN-P模式表示,这个程序将一次下载一个块,如果重写一个旧的CPU程序就可能出现冲突,所以一般在下载前将CPU切换到STOP模式。
5 WINCC程序的使用
51 简介,WINCC是在生产和过程自动化中解决可视化和控制任务的工业技术中性系统。具有控制自动化过程的强大功能,是基于个人计算机的 *** 作监视系统,它很容易结合标准的和用户的程序建立人机界面精确的满足生产实际要求。WINCC有两个版本RC版(具有组态和开发环境)、RT版(只有运行环境),我们一般使用的是RC版。
52 WINCC简单使用步骤
521 变量管理,首先确定通讯方式安装驱动程序,然后定义内部变量和外部变量,外部变量是受你买的WINCC软件授权限制的最大授权64K字节,内部变量没有限制。
522 画面生成,进入图形编辑器,图形编辑器是一种用于创建过程画面的面向矢量的作图程序。也可以使用包含在对象和样式库中的众多的图形对象来创建复杂的过程画面。可以通过动作编程将动态添加到单个图形对象上。
523 报警记录设置,报警记录提供了显示和 *** 作选项来获取和归档结果。可以任意地选择消息块、消息级别、消息类型、消息显示以及报表。为了在运行中显示消息,可以使用包含在图形编辑器中的对象库中的报警控件。
524 变量记录,变量记录是用来从运行过程中采集数据并准备将它们显示和归档。
525 报表组态,报表组态是通过报表编辑器来实现的。是为消息、 *** 作、归档内容和当前或已归档的数据定时器或事件控制文档的集成的报表系统,可以自由选择用户报表的形式。
526 全局脚本的应用,全局脚本就是C语言函数和动作的通称,根据不同的类型脚本被用于给对象组态动作并通过系统内部C语言编译器来处理。全局脚本动作用于过程执行的运行中。一个触发可以开始这些动作的执行。
527 用户管理器设置,用户管理器用于分配和控制用户的单个组态和运行系统编辑器的访问权限。每建立一个用户,就设置了WINCC功能的访问权利并独立的分配给此用户。至多可分配999个不同的授权。
528 交叉表索引,交叉索引用于为对象寻找和显示所有使用处,例如变量、画面和函数等。使用“链接”功能可以改变变量名称而不会导致组态不一致。
参考文献
[1] 林小峰可编程控制器原理及应用北京:高等教育出版社,1994
[2] 田瑞庭可编程控制器应用技术北京:机械工业出版社,1994
[3] 张万忠可编程控制器应用技术北京:化学工业出版社,200112
[4] 于庆广可编程控制器原理及系统设计北京:清华大学出版社2004
PLC,俗称“电力线上网”,英文全名为Power Line Communication,主要是指利用电力线传输数据和话音信号的一种通信方式
1、主要特点
① 结构灵活,不受环境的限制,有电即可组建网络,同时可以灵活扩展接入端口数量,使资源保持较高的利用率,在移动性方面可与WLAN媲美。
② 传输质量高、速度快、带宽稳定,可以很平顺的在线观赏DVD影片,它所提供的14Mbps带宽可以为很多应用平台提供保证。最新的电力线标准HomePlug AV传输速度已经达到了200Mbps;为了确保QoS,HomePlug AV采用了时分多路访问(TDMA)与带有冲突检测机能的载体侦听多路访问(CSMA)协议,两者结合,能够很好地传输流媒体。
③ 范围广,无所不在的电力线网络也是这种技术的优势。虽然无线网络可以做到不破墙,但对于高层建筑来说,其必需布设N多个AP才能满足需求,而且同样不能避面信号盲区的存在。而电力线是最基础的网络,它的规模之大,是其他任何网络无法比拟的。由此,运营商就可以轻松地把这种网络接入服务渗透到每一处有电力线的地方。这一技术一旦全面进入商业化阶段,将给互联网普及带来极大的发展空间。终端用户只需要插上电力猫,就可以实现因特网接入,电视频道接收节目,打电话或者是可视电话。
④ 低成本。充分利用现有的低压配电网络基础设施,无需任何布线,节约了资源。无需挖沟和穿墙打洞,避免了对建筑物、公用设施、家庭装潢的破坏,同时也节省了人力。相对传统的组网技术,PLC成本更低,工期短,可扩展性和可管理性更强。目前国内已开通电力宽带上网的地方,其包月使用费用一般为50-80元/月左右,这样的价格和很多地方的ADSL包月相持平。
⑤ 适用面广。PLC作为利用电力线组网的一种接入技术,提供宽带网络“最后一公里”的解决方案,广泛适用于居民小区,酒店,办公区,监控安防等领域。它是利用电力线作为通信载体,使得PLC具有极大的便捷性,只要在房间任何有电源插座的地方,不用拨号,就立即可享受45~45Mbps的高速网络接入,来浏览网页、拨打电话,和观看在线,从而实现集数据、语音、视频,以及电力于一体的“四网合一”。
PLC 还有一种说法是:产品生命周期(product life cycle)观念,简称PLC,是把一个产品的销售历史比作象人的生命周期一样,要经历出生、成长、成熟、老化、死亡等阶段。就产品而言,也就是要经历一个开发、引进、成长、成熟、衰退的阶段。
1、产品开发期:从开发产品的设想到产品制造成功的时期。此期间该产品销售额为零,公司投资不断增加。
2、引进期:新产品新上市,销售缓慢。由于引进产品的费用太高,初期通常利润偏低或为负数,但此时没有或只有极少的竞争者。
3、成长期:产品经过一段时间已有相当知名度,销售快速增长,利润也显著增加。但由于市场及利润成长较快,容易吸引更多的竞争者。
4、成熟期:此时市场成长趋势减缓或饱和,产品已被大多数潜在购买者所接受,利润在达到顶点后逐渐走下坡路。此时市场竞争激烈,公司为保持产品地位需投入大量的营销费用。
5、衰退期:这期间产品销售量显著衰退,利润也大幅度滑落。优胜劣汰,市场竞争者也越来越少。
>盖勒普DNC系统 是基于32和64位 *** 作系统开发的自动化制造设备及生产信息化管理的网络平台,它赋予工业DNC(Distributed Numeric Control)更深更广的应用意义。DNC不仅能够使您所有的CNC数控加工中心,智能化工业机器人,自动化生产线PLC工作中心和其它的所有工业设备联网在线,实现高效、准确、安全、快速的程序传输,同时有效管理您的生产设备、加工程序和工位信息。

此外,DNC不但可以与其他系列产品管理系统无缝集成,还可以和企业第三方信息化管理系统及工具软件MRPII/ERP/PDM/CAPP/MES/CAD/CAM等集成。

数控机床程序传输流程:

1所有程序编程人员可以在自己的PC上进行编程,并上传至DNC服务器指定的目录下。
2现场设备 *** 作者通过设备CNC控制器发送“下载(LOAD)”指令,从服务器中下载所需的程序,待程序加工完毕后再通过DNC网络回传至服务器中,由程序管理员或工艺人员进行比较或归档。
好处:这种方式首先大大减少了数控程序的准备时间,消除了人员在工艺室与设备端的奔波,并且可完全确保程序的完整性和可靠性,消除了很多人为导致的“失误”,最重要的是通过这套成熟的系统,将企业生产过程中所使用的所有NC程序都能合理有效的集中管理起来。

盖勒普DNC系统主要功能如下:

1 支持同时在线联网多达4096台数控设备
盖勒普 DNC™ 64位系统支持只用一台DNC服务器(中端PC即可)就可以使多达4096台数控设备的同时联网在线并进行多线程(Multi-thread)双向传输,而且它可以使您的数控设备进行可视化分配管理。

2,数控机床程序传输,改善您的车间工作流程
拥有盖勒普DNC,您就不必再吃力得拿着软盘、纸带、笔记本电脑或是老式硬件来下载数控设备上的加工程序。盖勒普DNC提供了一个真正的网络解决方案,当你需要使用程序时可以从服务器直接进行调用,当程序完成现场的加工确认或者进行更改后,又可以返回到你的服务器中进行保存。整个过程将变得更加可靠,每个人都会变得更有效率。

3DNC Explorer™ 用户界面
盖勒普DNC采用微软的Office和Windows 界面让使用者在 *** 作时变得非常轻松、容易上手。盖勒普DNC界面包括鼠标拖放,右键快捷菜单、剪切、复制、粘贴,状态/工具栏,热键功能、工具按钮和在线帮助。不仅如此,Predator DNC还可以客户化设置数控设备的物理配置以及提供更多客户化特性的功能……

4Remote Request多线程远程请求
盖勒普DNC 通过远程请求功能,可以让每一个 *** 作者通过在制造设备端的简易 *** 作,直接完成与DNC服务器之间的程序调用及通讯,使 *** 作者在设备端就能实现上传、下载自己想要的数控加工程序,避免了 *** 作者在现场与服务器或办公室之间的来回奔波。

盖勒普DNC Remote Request; 具有实时反馈通讯错误信息的功能,能够与DNC 服务器建立起对话,让 *** 作者在设备端就可以得知通讯不成功的原因,这是盖勒普DNC 系统的特色功能,除了Remote Request 功能外,盖勒普DNC还具有远程查看文件目录、远程自动命名、远程打印控制和远程E-mail传输以及更多远程功能……

5盖勒普DNC Connect客户端
盖勒普DNC Connect; 为用户提供了一个基于PC用于NC程序管理浏览、编辑和通讯的客户端。盖勒普DNC Connect; *** 作界面直观并具有亲和力,并且具有针对触摸屏应用的大按钮界面。

6盖勒普DNC; 文档管理器(Integrated Browsing)
是否为陷入了一大堆杂乱无章的数控程序和生产资源文档而感到烦恼呢?盖勒普DNC的文档管理器能帮助您解决这一切。它能支持在同一窗口中浏览Microsoft Office™ 文档(包括:DOC、XLS、PPT、MPP、VSD等)还包括PDF、DXF、DWG、TIF、JPEG、GIF等其他常用的文档格式。

7100%网络兼容性
盖勒普DNC支持兼容CNC与您服务器的所有 *** 作系统,比如Window、Linux、Solaris、Mac、VMS和Unix等 *** 作系统。盖勒普 DNC; 可以让您的工业自动化设备灵活得运用有线或者无线以太网协议联网,并且支持网络共享、文件夹拖放等功能。

8盖勒普DNC; 系统运行日志
盖勒普DNC; 具有简单好用和记录详细的日志,分为通信日志和系统运行日志,可以以Excel、Access、HTML和ASCII等形式被保存,方便管理人员进行查询和系统维护。

9盖勒普DNC; 强大的在线帮助功能
盖勒普DNC; 系统具有方便易用的在线帮助功能,在系统使用过程中,您只需轻轻按下F1键,计算机便会d出当前应用界面所有功能的详细帮助文档供你浏览查阅。

盖勒普DNC帮助企业实现:
1实现车间数控设备的完全网络化管理,为不同车间生产需求搭建多样的车间网络系统,消除车间数控设备之间的信息孤岛。彻底改变以前数控设备的单机通讯方式,全面实现数控设备的集中管理与控制。

2NC程序管理更加规范化。盖勒普DNC系统完善的程序传输流程、严谨的用户权限管理、方便的程序版本管理以及良好的可追溯性,实现对NC程序全生命周期的跟踪管理。

3大幅提高数控设备利用率,减少数控设备准备时间。盖勒普DNC系统方便、可靠、全自动的NC程序传输功能,可最大程度地提高数控设备的有效利用率。

4产品质量得到进一步提高,明显降低产品废品率。盖勒普DNC系统可从最大程度上避免程序错误,从管理手段与措施上使产品质量有了根本的保障。

5明显降低工作人员的劳动强度。服务器端无人职守、设备端全自动远程传输, *** 作者不用离开设备就能完成程序的远程调用、远程比较和远程上传等全部工作,明显减少了 *** 作者因程序传输而在车间现场来回奔波的时间。

6车间现场更加整洁。盖勒普DNC系统实现了NC程序的集中管理与集中传输,车间现场不再需要大量的台式计算机及桌椅板凳,取而代之的是少量美观大方的现场触摸屏,整个车间显得更整洁,更符合车间精益生产管理的要求。

7车间生产现场的通讯数据与企业的第三方信息化管理系统集成应用(如:MRPII/ERP/MES/MDC/PDM/PLM /CAPP/CAD/CAM),达到真正高效即时的数据共享。

8为企业进一步数字化工厂的建设预留接口,搭建一体式的智能化车间网络管理平台。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13254756.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-27
下一篇 2023-06-27

发表评论

登录后才能评论

评论列表(0条)

保存