8+16的服务器可以压测多少

8+16的服务器可以压测多少,第1张

服务器的压测能力是由多个因素决定的,而8+16的服务器的压测能力则主要取决于其CPU、内存、磁盘等硬件配置以及网络带宽等因素。
首先,8+16的服务器通过其CPU的处理能力,可以同时处理多个请求,从而提高服务器的响应速度和性能。其次,内存的大小也会影响服务器的压测能力,内存越大,服务器同时处理请求的能力也就越强。此外,磁盘的速度和容量也会影响服务器的压测能力,磁盘速度快,磁盘容量大,服务器能够处理更多的请求。最后,网络带宽也会影响服务器的压测能力,带宽越大,服务器处理请求的速度也就越快。
因此,8+16的服务器可以根据其硬件配置和网络带宽的不同,承受的压测量也会有所差异。一般来说,如果服务器的硬件配置足够强大,网络带宽也足够宽敞,那么8+16的服务器可以承受数万个请求的压测。但如果硬件配置较低或者网络带宽较窄,那么服务器的压测能力也会有所下降。因此,在进行服务器压测之前,需要综合考虑多个因素,才能准确评估服务器的压测能力。

在“服务器名称或ip”设置127001,端口号设置:8080,“方法”设置post,路径设置网站登录的地址,如“/exam/operatorAction”。

登录需传入用户、密码。在“同请求一起发送参数”列表中添加参数。参数值根据web应用设置。如login_user=0001;login_password=1;actFlag=login。

一般网站登录后,在tomcat中生成了session,之后访问其他页面将无需再次登录,前提是浏览器需支持cookie。在jmap中也同样,如要继续访问其他页面,还需做下面关键的设置。

Apache JMeter

是Apache组织开发的基于Java的压力测试工具。用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域。 它可以用于测试静态和动态资源,例如静态文件、Java 小服务程序、CGI 脚本、Java 对象、数据库、FTP 服务器, 等等。JMeter 可以用于对服务器、网络或对象模拟巨大的负载,来自不同压力类别下测试它们的强度和分析整体性能。

在测试执行过程中,对测试结果的分析是一个需要进行深入思考的重点问题。分布式系统测试的重点在于对后端服务器集群的测试,而判定系统中是否存在Bug则是我们需要解决的重要问题。那么应该如何确定是否存在Bug呢?

对于测试结果的分析,我们通常观察下面几种情况。

观察前端应用的返回结果。这里需要分两种情况来考虑:第一,按照前端应用业务功能点及流程进行 *** 作,观察返回结果是否符合业务方的需求预期;第二, *** 作后端的服务器(通常是重启、宕机、断网等 *** 作),观察前端应用的返回结果是否符合系统的设计需求。

分析服务器日志。在功能测试过程中,当我们在启动服务器的时候,需要将日志级别定义为Debug级别(最低级别)。这样做的主要目的是为了能便于测试工程师来分析日志和定位问题。为了能更好地定位问题,常常需要在服务器程序代码中进行日志打桩,把程序中的一些重要数据通过日志的方式展现出来。通常情况下,我们需要对日志的格式进行约定,在日志行中增加一些关键字来进行分类,这将便于测试工程师进行日志分析,也有利于开展分布式系统的自动化测试。另外,值得注意的是,我们尽可能地将打桩代码放在Debug代码中,避免影响系统代码,引入新问题。

分析 *** 作系统的一些重要信息。我们测试的分布式系统绝大多数是基于Linux *** 作系统开发的,在测试的过程中,除了详细分析程序日志以外,还需要对 *** 作系统的一些重要数据信息进行分析,从而来诊断服务器程序是否存在异常。以Linux *** 作系统为例,我们常常会使用top命令、netstat命令及sar命令来查看 *** 作系统的一些数据信息。例如,可以通过netstat命令检查服务器程序是否正确地监听了指定的端口等。

借助其他分析工具。例如,如何判断服务器程序是否产生了内存泄漏?通常需要借助于内存检测工具来进行分析。在Linux环境下,我们常用Valgrind来进行内存检测。这是一款非常好用、功能强大的分析工具,可以帮助测试或者开发工程师快速发现很多隐藏的程序Bug,尤其是在内存检测方面(同时它还具有很多其他优秀的功能,读者可以自己查看官网中的使用手册)。对于分布式系统而言,压力测试和性能测试非常重要。在进行压力测试和性能测试的时候,可能会碰到下面一些难点。

数据准备。如何准备海量的测试数据并保证模拟数据的真实性?以一个分布式的文件系统为例,预先存入100GB的数据还是存入100TB的数据、存入的文件是大小基本一致差别不大还是各不相同甚至差异很大(例如,从几十字节至几十兆字节不等),这些因素对于分布式系统的性能影响是有很大差异的。另外,如果需要预先存入100TB的数据,若按每秒写入100MB数据来计算,写入100TB数据需要100×1024×1024/100=1048576秒=29127小时=12天。我们是否能忍受这么长时间的数据准备工作?为了解决这样的问题,我们需要对系统架构设计进行深入分析,设计好测试场景,并提前进行测试用例的设计,以尽早开始准备测试数据。

性能或压力测试工具。通常来说,分布式系统的测试需要开发一些测试工具来满足性能测试的需求。如果可以的话,建议这样的测试工具最好由测试工程师自己来实现,因为测试工程师更清楚自己的测试需求。当需要自己开发测试工具的时候,有两个关键问题需要重点关注:第一,一些关键数据的收集方式与计算将成为性能测试工具的关键,例如,TPS(每秒请求数)、Throughput(吞吐量)计算的准确性;第二,要保证性能测试工具的性能,如果工具本身的性能不好,将无法给予分布式系统足够强大的压力来进行测试。另外,当考虑到多并发(例如有10万客户端同时并发连接)时,如果性能测试工具在一台测试机器上只能运行50个或者更少的话,那么需要的测试机器数量也将会很庞大(例如2000台测试机),这个成本或许是许多公司不能承受的。因此,性能测试工具本身的性能必须要足够好才能满足需求、降低测试成本。自动化测试是测试行业发展的必然趋势,对于分布式系统测试而言也不例外。在实施分布式系统自动化测试的过程中,我们可能会碰到下面两个难点问题。

涉及平台多且硬件杂,测试流程控制困难。在实施自动化测试的过程中,测试脚本需要控制的 *** 作系统和应用程序很多,而且存在跨平台的特性,同时还有可能需要控制一些网络设备。因此,选择一个优秀的自动化测试框架成为了非常重要的工作之一。以我们的实践经验来看,STAF是一个不错的选择,它的平台(Windows及Linux各版本)支持及开发语言的支持都很全面。

测试结果验证复杂。对于分布式系统的自动化测试来说,我们需要通过测试脚本来收集各种测试结果数据以验证测试结果的正确性。在实施自动化测试的过程中,我们可以将测试结果数据收集部分模块化,通过各子模块来检测各项数据是否正确。例如,我们会设计一个日志分析模块,主要负责从服务器应用程序的日志中收集相应数据进行对比验证(本文前面提到的在打桩日志中增加关键字部分就显得格外重要)。

随着互联网的发展,大型分布式系统也越来越多、越来越复杂、越来越重要。如何有效地保证大型分布式系统7×24小时全天候持续稳定地运行也就成为了一个重要课题。

Grinder:Grinder是一个开源的JVM负载测试框架,它通过很多负载注射器来为分布式测试提供了便利。支持用于执行测试脚本的Jython脚本引擎>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13261381.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-28
下一篇 2023-06-28

发表评论

登录后才能评论

评论列表(0条)

保存