其实现在的很多场景都部署在物理机上,云服务的好处是可以动态的进行资源的申请,这样就不用考虑高峰期的资源复用问题,只需要在高峰时期d性的申请资源。对于传统物理机的部署的场景,其实可以更好的去处理你的workload,每个workload其实并不是说一张卡完全就不能搞定,在工程实际的尝试中,你会发现CPU和GPU之间的资源配比,其实是需要每个场景都单独的去考虑的,所以在这种场景下,可以结合你本地的硬件环境去做调整,然后找到一个最优,对于你这种场景的一个实现,这是我理解的物理机部署和云服务部署之间的优势和劣势。没必要,如果咱们要求服务器的安全性高,不能断电,可以配置双电增加安全性。如果咱们服务器用的时候开机,不用的时候关机,安全性要求低的时候可以不要。不过还是加个电源还是好点的߅也差不了多少钱。
配置深度学习服务器建议考虑蓝海大脑,感觉他们做事情很职业很负责,沟通也比较顺畅。是异构计算的高性能超算平台公司,专注为企业数据中心、云计算、人工智能、边缘计算、生命科学等领域的高性能服务商。毕竟是个大件,还是要找专业的公司靠谱一些。会深度学习模型在gpu上的部署是什么岗位
人工智能工程师岗位,深度学习模型部署工程师 职位类别:大数据/人工智能工程师 工作性质:全职 月薪范围:4k-6k 学历要求:本科及以上 工作城市:郑州 招聘人数:2 人 招聘单位:郑州市帝玛克机械工具针对人工智能的深度学习场景,思腾合力研发出深思AW4211-8GR服务器,具有高性能、高密度、可扩展性强的特点,支持双路AMD7002系列处理器,CPU直通设计,延迟降低至少150ms,同时节省PCIE Switch成本,可广泛应用于AI、深度学习场景,也可作为GPU计算集群高密度、高性能的节点平台。想了解更多可以百度一下推荐品牌: LINKZOL(联众集群);
可以参考其官网;
*** 作系统可以安装Ubuntu 1404 LTS,需要如下软件:
编译器:GNU编译器,包括C/C++/Fortran编译器;
Intel编译器,包括C/C++/Fortran编译器、MKL、等;
并行环境:OpenMPI、MPICH等MPI并行环境;
GPU开发环境:最新CUDA驱动、编译器、调试器、SDK及例子文件等;
cuDNN加速,CUDA FFT、CUDA BLAS等;
深度学习框架:Caffe, Torch, Theano, BIDMach、TensorFlow;其中,Caffe需要编译提供python接口和Matla(支持mex编译)接口;
DNN平台:基于B/S架构,便于用户实时且可视化地进行DNN的训练、测试
推荐配置一:
计算平台采用:LZ743GR-2G/Q
系统:Ubuntu 14043 x64
CPU:Intel Xeon十核E5-2630v4(22GHz,80 GT/s)
内存:原厂64GB内存 (16GB×4) DDR4 2133MHZ ECC-REG(带内存校错技术,最大支持2T)
系统硬盘:INTEL 25寸240G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD)
系统硬盘:希捷35寸4T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;)
GPU卡:2块NVIDIA TATAN-X GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大2个GPU卡)
电源:1200W High efficiency (96%)金牌电源
推荐配置二:
计算平台采用:LZ-748GT
系统:Ubuntu 14043 x64
CPU:Intel Xeon十二核E5-2650v4(22GHz,96 GT/s)
内存:原厂256GB内存 (16GB×16) DDR4 2133MHZ ECC-REG(带内存校错技术,最大支持2T)
系统硬盘:2块INTEL 25寸480G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD)
系统硬盘:3块希捷35寸4T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;)
GPU卡:4块TESLA TITANX GPU计算卡或者4块tesla P4O GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大4个GPU卡)
电源:2000W High efficiency (94%)冗余钛金电源
推荐配置三:
计算平台采用:LZ428GR-8G/Q
系统:Ubuntu 14043 x64
CPU:Intel Xeon十四核E5-2690v4(26GHz,96GT/s)
内存:原厂256GB内存 (16GB×16) DDR4 2133MHZ ECC-REG(带内存校错技术,最大支持2T)
系统硬盘:2块INTEL 25寸480G 企业级SSD固态硬盘(最大支持8块硬盘,类型:SATA,SSD)
系统硬盘:3块希捷25寸2T 7200RPM 企业级硬盘(最大支持8块硬盘,类型:SATA,SSD;)
GPU卡:8块TESLA P40 GPU计算卡或者8块NVIDIA TATAN-X GPU卡 (CUDA核心数3584个核心,12G DDR5 显存,最大8个GPU卡)
电源:1600W(2+2) High efficiency (96%)钛金电源;
可以咨询:1381O114665
深度学习是机器学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理等多个领域都取得了卓越的成果,可见其重要性
熟悉深度学习的人都知道,深度学习是需要训练的,所谓的训练就是在成千上万个变量中寻找最佳值的计算。这需要通过不断的尝试识别,而最终获得的数值并非是人工确定的数字,而是一种常态的公式。通过这种像素级的学习,不断总结规律,计算机就可以实现像人一样思考。因而,更擅长并行计算和高带宽的GPU,则成了大家关注的重点。
很多人认为深度学习GPU服务器配置跟普通服务器有些不一样,就像很多人认为做设计的机器一定很贵一样。其实只要显卡或者CPU满足深度学习的应用程序就可以进行深度学习。由于现在CPU的核心数量和架构相对于深度学习来说效率会比GPU低很多,所以大部分深度学习的服务器都是通过高端显卡来运算的。
这里谈谈关于深度学习GPU服务器如何选择,深度学习服务器的一些选购原则和建议:
1、电源:品质有保障,功率要足够,有30~40%冗余
稳定、稳定、还是稳定。一个好的电源能够保证主机再长时间运行不宕机和重启。可以想象一下,计算过程中突然重启,那么又要重来,除了降低效率,还影响心情。有些电源低负载使用的时候可能不出问题,一旦高负载运行的时候就容易出问题。选择电源的时候一定要选择功率有冗余品质过硬,不要功率刚刚好超出一点。
2、显卡:目前主流RTX3090,最新RTX4090也将上市
显卡在深度学习中起到很重要的作用,也是预算的一大头。预算有限,可以选择RTX3080 /RTX3090/RTX4090(上月刚发布,本月12日上市)。预算充足,可以选择专业深度学习卡Titan RTX/Tesla V100 /A6000/A100/H100(处于断供中)等等。
3、CPU:两家独大,在这要讲的是PC级和服务器级别处理器的定位
Intel的处理器至强Xeon、酷睿Core、赛扬Celeron、奔腾Pentium和凌动Atom5个系列,而至强是用于服务器端,目前市场上最常见的是酷睿。当下是第三代Xeon Scalable系列处理器,分为Platinum白金、Gold金牌、 Silver 银牌。
AMD处理器分为锐龙Ryzen、锐龙Ryzen Pro、锐龙线程撕裂者Ryzen Threadripper、霄龙EPYC,其中霄龙是服务器端的CPU,最常见的是锐龙。当下是第三代 EPYC(霄龙)处理器 ,AMD 第三代 EPYC 7003 系列最高 64核。
选择单路还是双路也是看软件,纯粹的使用GPU运算,其实CPU没有多大负载。考虑到更多的用途,当然CPU不能太差。主流的高性能多核多线程CPU即可。
4、内存:单根16G/32G/64G 可选,服务器级别内存有ECC功能,PC级内存没有,非常重要
内存32G起步,内存都是可以扩展的,所以够用就好,不够以后可以再加,买多了是浪费。
5、硬盘:固态硬盘和机械硬盘,通常系统盘追求速度用固态硬盘,数据盘强调存储量用机械盘
固态选择大品牌企业级,Nvme或者SATA协议区别不大,杂牌固态就不要考虑了,用着用着突然掉盘就不好了。
6、机箱平台:服务器级别建议选择超微主板平台,稳定性、可靠性是第一要求
预留足够的空间方便升级,比如现在使用单显卡,未来可能要加显卡等等;结构要合理,合理的空间更利于空气流动。最好是加几个散热效果好的机箱风扇辅助散热。温度也是导致不稳定的一个因素。
7、软硬件支持/解决方案:要有
应用方向:深度学习、量化计算、分子动力学、生物信息学、雷达信号处理、地震数据处理、光学自适应、转码解码、医学成像、图像处理、密码破解、数值分析、计算流体力学、计算机辅助设计等多个科研领域。
软件: Caffe, TensorFlow, Abinit, Amber, Gromacs, Lammps, NAMD, VMD, Materials Studio, Wien2K, Gaussian, Vasp, CFX, OpenFOAM, Abaqus, Ansys, LS-DYNA, Maple, Matlab, Blast, FFTW, Nastran等软件的安装、调试、优化、培训、维护等技术支持和服务。
————————————————
版权声明:本文为CSDN博主「Ai17316391579」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:>
最近在学习机器学习,看到了深度学习这一部分。用tensorflow写了几个例子,CNN的,然后在我的15年版的MacbookPro上跑了跑了,训练速度真是不忍直视,而且,风扇呼呼转,真是心疼我这个Mac了。于是意识到显卡这个东西真是个门槛。因此才想着搞一台高配置的主机来跑深度网络。既然是跑深度学习,那么直接在电商网站上搜一下深度学习主机买来不就得了? 理论总是那么简单。。。
事实上,我看了下专门跑深度学习的主机,基本都是服务器级别的,动辄2W+ 。我是没这么多银子来投入这个的,没办法,穷人啊。
那么,想一下自己需求,找一个合适的主机吧。我的目的也很简单的:
好了, 这么一罗列就明确了,就是一个高配游戏主机喽。不要误会,这是巧合~~ 于是 我去闲鱼上瞅了瞅,看出点门道,一般i7 8700 + 1080Ti显卡的主机,就可以卖到1W了~~ 啧啧 游戏真是败家。
一开始我也想着直接买个这种主机,省事儿,不过既然都花到1W了,对各个配置外观就很在意了。看了很多主机,感觉都不是理想中的样子,要么机箱丑, 要么主板渣,要么硬盘和内存规格不够。其实我主要在意的是CPU和显卡,只要这两个满足就OK啊,然后就可以慢慢攒出自己想要的主机了。我看了闲鱼上的价格,i7 8代CPU的价格,代购的话也就2500左右,为了以后升级考虑,直接上了i7 8086K(这是个intel为了纪念第一代8086芯片40周年的纪念品,其实是从8700K中挑出来的体质好的片),4GHZ,高主频,干事儿快。1080Ti的显卡是最具性价比的了,二手价格4K左右,不过容易踩到雷买到挖矿的卡~ 这个小心了。
总的来说,各个配件都准备妥当了,来一下清单:
总计: 9800吧~(真贵)~ 总的来说,必直接先闲鱼上的主机要好一些,多了可配置性。
这个就不展开了,按照说明书一步步来就好。主要是安装顺序以及接线。
安装顺序:电源装到机箱 -> CPU装到主板 -> 主板装到机箱 -> 水冷 散热风扇 -> 接线
这里有两个地方需要注意:
最后上个成品图 啊哈哈~
这么好的显卡不玩玩游戏是不是亏了?? 那就保留一个win系统吧~
现在网上的双系统如何安装帖子都是老教程了~ Ubuntu都发布了1804,支持UEFI+GPT。那么如何搞呢?
首先,先安装win10,如果是自己制作U盘启动项,务必选择UEFI+GPT组合模式,也就是做用UEFI模式引导,硬盘为GPT格式。如果不是,那么需要检查一下并完成转换,这里有个教程,直接用win10自带的工具就能做到,但是前提是win10升级到1703之后的版本。
用Win10自带的MBR2GPT无损转换GPT磁盘分区形式
然后就是安装Ubuntu1804了。我是安装在一个磁盘里,因此需要先空出一定大小的未分配空间。然后制作Ubuntu1804的U盘启动项,选择UEFI+GPT组合模式。这里是官方教程:
win系统上制作Ubuntu的U盘启动
然后按照这个教程就好了: Windows10+Ubuntu1804双系统安装
安装好Ubuntu1804之后登录进去发现系统变漂亮了(但是还是一贯的难用,相比Mac和win)。可以进行一些美化 *** 作。。 好像很多人喜欢这个,贴个教程吧: Linux也可以这样美——Ubuntu1804安装、配置、美化-踩坑记
之后就是配置我们的深度学习环境了。目前我主要用tensorflow,只记录这个。
主要步骤:
好了,可以从GitHub上下点example跑起来了,CNN的计算有了1080TI的加持还是很快的,开心~~
需要配置远程访问,jupyter notebook服务。远程Pycharm调试环境。
这里有个麻烦,就是家里是局域网,而且接的是长城渣宽带,没有独立IP,需要用frp中转一下。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)