如何进行大数据分析及处理?

如何进行大数据分析及处理?,第1张

1可视化分析
数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3 预测性分析大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

目前常用的大数据解决方案包括以下几类

一、Hadoop。Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

二、HPCC。HPCC,HighPerformanceComputingand(高性能计算与通信)的缩写。HPCC主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

三、Storm。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来

四、ApacheDrill。为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在AndroidMarket上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

云服务器的配置规格影响价格,也直接决定了它的计算能力和特点,是在采购时要重点考虑的问题。

选云服务器配置,看这三个维度

云服务器的配置规格主要取决于类型、代别、实例大小三个最重要的维度。

维度一:类型

云服务器的“类型”或“系列”,是指具有同一类设计目的或性能特点的云服务器类别。
通常来说,云厂商会提供通用均衡型、计算密集型、内存优化型、图形计算型等常见的云服务器类型。这些类型对应着硬件资源的某种合理配比或针对性强化,方便你在面向不同场景时,选择最合适的那个型号。


vCPU 数和内存大小(按GB计算)的比例,是决定和区分云服务器类型的重要依据之一。

通用均衡型的比例通常是1:4,如 2核8G,这是一个经典搭配,可用于建站、应用服务等各种常见负载,比如作为官网和企业应用程序的后端服务器等。


如果 vCPU 和内存比是1:2,甚至1:1,那就是计算密集型的范畴,它可以用于进行科学计算、视频编码、代码编译等计算密集型负载。


比例为1:8及以上,就被归入内存优化型,比如8核64G的搭配,它在数据库、缓存服务、大数据分析等应用场景较为常见。


图形计算型是带有GPU能力的虚拟机,一般用于机器学习和深度学习模型的训练和推理。随着 AI的火热,这类机器也越来越多地出现在各种研发和生产环境中。


在主流云计算平台上,常常使用字母缩写来表达云服务器的系列。比如,AWS 的通用型是M系列,阿里云的内存优化型为R系列,Azure的计算优化型为F系列。

维度二:代别

云服务器的“代”(Generation),用来标识这是该系列下第几代的机型。
数据中心硬件和虚拟化技术是在不断发展的,云厂商需要不断地将最新的技术和能力推向市场,所以即便是同一系列的机型,不同的代别之间也会有不小的区别。


同类型云服务器的更新换代,往往会先带来相应硬件CPU的换代提升。由于CPU在不断更新,所以云服务器的单核性能未必相同。有时,虽然两个云服务器的核数一致,但由于底层芯片的架构和频率原因,性能上可能有较大的差别。


新一代的型号,往往对应着全新的特制底层物理服务器和虚拟化设施,能够提供更高的性能价格比。

维度三:实例大小

云服务器的实例大小(Size),指的是硬件计算资源的规模。
在选定的机器类型和代别下,我们能够自由选择不同的实例大小,以应对不同的计算负载。在描述实例大小时,业界常常使用medium、large、xlarge 等字眼来进行命名区分,这样的描述基本已经成为事实标准,包括AWS、阿里云、腾讯云在内的多家主流厂商都在使用。


大致可以这样记忆:标准large对应的是2vCPU的配备,xlarge则代表4个vCPU,而更高配置一般用nxlarge来表达,其中n与xlarge代表的4vCPU 是乘法关系。比如,8xlarge 就说明这是一台84=32vCPU的机器。


如若要更严谨的表述配置,则使用vCPU而非核数(Core)来描述云服务器处理器的数量。因为超线程(HyperThreading)技术的普遍存在,常常一个核心能够虚拟出两个vCPU的算力,但也有些处理器不支持超线程,所以 vCPU是更合适的表达方式,不容易引起混淆和误解。


在某些场景下,你可能还会看到“metal”或者“bare metal”这样的描述规格的字眼,中文称为“裸金属”。它们就是云服务商尽最大可能将物理裸机以云产品方式暴露出来的实例,主要用于一些追求极致性能,或是需要在非虚拟化环境下运行软件的场景。

云服务器的命名规则

云服务器的型号名称一般由类型、代别、实例大小这几项的缩写组合而成,有时还会带有补充后缀。AWS的命名规则最具代表性(阿里云采用的也是非常类似的格式):

当你理解了云服务器的命名规则后,今后看到某个具体型号,便能够很快明白背后的含义,晦涩的字符串立刻变得清晰。


比如,分解r54xlarge这个型号,这首先是一个R类型第5代的内存型机器,它应该有4×4=16个vCPU,内存大小则是16×8=128G(内存型机器的CPU内存比一般为1:8)。


当然,并非所有的云都一定是采用类似 AWS 的命名规则,微软Azure就用了一个略有不同的命名体系,大致可以总结为:

比如“E4v3”,就代表了微软Azure上4核32G的第三代内存型机器。掌握了Azure的格式特征后,你同样能够很快地解读标识的具体含义。


在命名公式中,还有一个称之为“后缀”的可选部分,在许多的型号命名中都能看到它。它一般是作为型号硬件信息的一个重要补充,这种型号与不带此后缀的标准版本相比,有一些显著的区别或特点。比如阿里云,表达“网络增强”含义的后缀是“ne”。

如何验证机型配置与期望相匹配?
在Linux环境下,可以使用lscpu命令来了解云服务器的CPU信息,并与机器的具体型号名称进行对照。下图是在一台AWS的m5axlarge机型上运行的结果,可以看到芯片提供商AMD及双核四线程等关键信息,与机型命名的含义相符:

>数据库的多表大数据查询应如何优化?

1应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
2应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
3应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
4in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:
select id from t where num in(1,2,3)
对于连续的数值,能用 beeen 就不要用 in 了:
select id from t where num beeen 1 and 3
5尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT FROM T1 WHERE NAME LIKE ‘%L%’
SELECT FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快 *** 作,引擎不得不对全表所有数据逐条 *** 作来完成任务。而第三个查询能够使用索引来加快 *** 作。
6必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
7应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT FROM T1 WHERE F1/2=100
应改为:
SELECT FROM T1 WHERE F1=1002
SELECT FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’
应改为:
SELECT FROM RECORD WHERE CARD_NO LIKE ‘5378%’
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的 *** 作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将 *** 作移至等号右边。
8应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
9不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11很多时候用 exists是一个好的选择:
elect num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=anum)
SELECT SUM(T1C1)FROM T1 WHERE(
(SELECT COUNT()FROM T2 WHERE T2C2=T1C2>0)
SELECT SUM(T1C1) FROM T1WHERE EXISTS(
SELECT FROM T2 WHERE T2C2=T1C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

Java怎么把数据库的数据查询

Statement stmt = null;
ResultSet rs = null;
String query = "select 列名 from 表名 where id=11 and fname='xx' order by 列名 desc limit 1";
stmt = conncreateStatement();
rs = stmtexecuteQuery(query);
if (rsnext()) {
result = rsgetInt("列名");
}

数据库表内数据查询

楼上的 拼写错误,我来修正 ^^
select count() from 表名

如何查询大数据库数据存在

传统数据库处理大数据很困难吧,不建议使用传统数据库来处理大数据。
建议研究下,Hadoop,Hive等,可处理大数据。
如果有预算,可以使用一些商业大数据产品,国内的譬如永洪科技的大数据BI产品,不仅能高性能处理大数据,还可做数据分析。
当然如果是简单的查询,传统数据库如果做好索引,可能可以提高性能。

如何实现不同数据库的数据查询分页

有两种方法
方法1:
select 100 from tbllendlist where fldserialNo not in ( select 300100 fldserialNo from tbllendlist order by fldserialNo ) order by fldserialNo
方法2:
SELECT TOP 100 FROM tbllendlist WHERE (fldserialNo > (SELECT MAX(fldserialNo) FROM (SELECT TOP 300100 fldserialNo FROM tbllendlist ORDER BY fldserialNo) AS T)) ORDER BY fldserialNo

如何提高Oracle数据库数据查询的命中率

影响命中率的因素有四种:字典表活动、临时段活动、回滚段活动、表扫描, 应用DBA可以对这四种因素进行分析,找出数据库命中率低的症结所在。 1)字典表活动 当一个SQL语句第一次到达Oracle内核时数据库对SQL语句进行分析,包含在查询中的数据字典对象被分解,产生SQL执行路径。如果SQL语句指向一个不在SGA中的对象表或视图,Oracle执行SQL语句到数据典中查询有关对象的信息。数据块从数据字典表被读取到SGA的数据缓存中。由于每个数据字典都很小,因此,我们可缓存这些表以提高对这些表的命中率。但是由于数据字典表的数据块在SGA中占据空间,当增加全部的命中率时,它们会降低表数据块的可用空间, 所以若查询所需的时间字典信息已经在SGA缓存中,那么就没有必要递归调用。 2)临时段的活动 当用户执行一个需要排序的查询时,Oracle设法对内存中排序区内的所有行进行排序,排序区的大小由数据库的initora文件的数确定。如果排序区域不够大,数据库就会在排序 *** 作期间开辟临时段。临时段会人为地降低OLTP(online transaction processing)应用命中率,也会降低查询进行排序的性能。如果能在内存中完成全部排序 *** 作,就可以消除向临时段写数据的开销。所以应将SORT_AREA_SIZE设置得足够大,以避免对临时段的需要。这个参数的具体调整方法是:查询相关数据,以确定这个参数的调整。 select from v$sysstat where name='sorts(disk)'or name='sorts(memory); 大部分排序是在内存中进行的,但还有小部分发生在临时段, 需要调整 值,查看initora文件的 SORT_AREA_SIZE值,参数为:SORT_AREA_SIZE=65536;将其调整到SORT_AREA_SIZE=131072、这个值调整后,重启ORACLE数据库即可生效。 3)回滚段的活动 回滚段活动分为回滚活动和回滚段头活动。对回滚段头块的访问会降低应用的命中率, 对OLTP系统命中率的影响最大。为确认是否因为回滚段影响了命中率,可以查看监控输出报表中的“数据块相容性读一重写记录应用” 的统计值,这些统计值是用来确定用户从回滚段中访问数据的发生次数。 4)表扫描 通过大扫描读得的块在数据块缓存中不会保持很长时间, 因此表扫描会降低命中率。为了避免不必要的全表扫描,首先是根据需要建立索引,合理的索引设计要建立人对各种查询的分析和预测上,笔者会在SQL优化中详细谈及;其次是将经常用到的表放在内存中,以降低磁盘读写次数。

如何优化数据库提高数据库的效率

1 SQL优化的原则是:将一次 *** 作需要读取的BLOCK数减到最低,即在最短的时间达到最大的数据吞吐量。
调整不良SQL通常可以从以下几点切入:
检查不良的SQL,考虑其写法是否还有可优化内容
检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写
检查优化索引的使用
考虑数据库的优化器
2 避免出现SELECT FROM table 语句,要明确查出的字段。
3 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。
4 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。
5 在判断有无符合条件的记录时建议不要用SELECT COUNT ()和select 1 语句。
6 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。
7 应绝对避免在order by子句中使用表达式。
8 如果需要从关联表读数据,关联的表一般不要超过7个。
9 小心使用 IN 和 OR,需要注意In集合中的数据量。建议集合中的数据不超过200个。
10 <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。
11 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。
12 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含第一列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。
13 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。
注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。
14 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customercustomer_id=ordercustomer_id where ordermoney>100。
15 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。
16 如果在语句中有not in(in) *** 作,应考虑用not exists(exists)来重写,最好的办法是使用外连接实现。
17 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读 *** 作在前面完成,数据库写 *** 作在后面完成,避免交叉。
18 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。
19 用union all 代替 union,数据库执行union *** 作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。
当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。
数据更新的效率
1 在一个事物中,对同一个表的多个insert语句应该集中在一起执行。
2 在一个业务过程中,尽量的使insert,update,delete语句在业务结束前执行,以减少死锁的可能性。
数据库物理规划的效率
为了避免I/O的冲突,我们在设计数据库物理规划时应该遵循几条基本的原则(以ORACLE举例):
table和index分离:table和index应该分别放在不同的tablespace中。
Rollback Segment的分离:Rollback Segment应该放在独立的Tablespace中。
System Tablespace的分离:System Tablespace中不允许放置任何用户的object。(mssql中primary filegroup中不允许放置任何用户的object)
Temp Tablesace的分离:建立单独的Temp Tablespace,并为每个user指定default Temp Tablespace
避免碎片:但segment中出现大量的碎片时,会导致读数据时需要访问的block数量的增加。对经常发生DML *** 作的segemeng来说,碎片是不能完全避免的。所以,我们应该将经常做DML *** 作的表和很少发生变化的表分离在不同的Tablespace中。
当我们遵循了以上原则后,仍然发现有I/O冲突存在,我们可以用数据分离的方法来解决。
连接Table的分离:在实际应用中经常做连接查询的Table,可以将其分离在不同的Taclespace中,以减少I/O冲突。
使用分区:对数据量很大的Table和Index使用分区,放在不同的Tablespace中。
在实际的物理存储中,建议使用RAID。日志文件应放在单独的磁盘中。

数据库的查询优化算法

给出你的查询,然后才可以对其进行优化

如何优化SQL Server数据库查询

如果你的查询比较固定,并且查询的条件区别度较高,可以建立相应的索引。
其他的一些规则,比如使用exists代替 in都可以试试

查询速度慢的原因很多,常见如下几种:
1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
可以通过如下方法来优化查询 :
1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要
2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)
3、升级硬件
4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段
5、提高网速;
6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 15 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 15 倍(虚拟内存大小设置的一半)。
7、增加服务器 CPU个数; 但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新 *** 作Update,Insert, Delete还不能并行处理。
8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
9、DB Server 和APPLication Server 分离;OLTP和OLAP分离
10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')
a、在实现分区视图之前,必须先水平分区表
b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统 *** 作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE 设置自动收缩日志对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:
1、 查询语句的词法、语法检查
2、 将语句提交给DBMS的查询优化器
3、 优化器做代数优化和存取路径的优化
4、 由预编译模块生成查询规划
5、 然后在合适的时间提交给系统处理执行
6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。
12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) mit trans 或者将动态SQL 写成函数或者存储过程。
13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。
14、SQL的注释申明对执行没有任何影响
15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取 *** 作,也是默认方式。可滚动性可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 Select 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚 *** 作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 Select 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定更新其它 未锁定 未锁定 未锁定 更新 指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。
16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在; 用索引优化器优化索引
17、注意UNion和UNion all 的区别。UNION all好
18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的
19、查询时不要返回不需要的行、列
20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET LOCKTIME设置锁的时间
21、用select 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制 *** 作的行
22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因为他们不走索引全是表扫描。也不要在Where字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代还可以变通写法:Where SUBSTRING(firstname,1,1) = 'm'改为Where firstname like 'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT *** 作如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS NULL,"NOT", "NOT EXISTS", "NOT IN"能优化她,而"<>"等还是不能优化,用不到索引。
23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。
24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: Select FROM PersonMember (INDEX = IX_Title) Where processid IN ('男','女')
25、将需要查询的结果预先计算好放在表中,查询的时候再Select。这在SQL70以前是最重要的手段。例如医院的住院费计算。
26、MIN() 和 MAX()能使用到合适的索引。
27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure这样不仅维护工作小,编写程序质量高,并且执行的速度快。
28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌Insert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值存储过程就没有这些动作: 方法:Create procedure p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善

越来越多的企业开始使用Hadoop来对大数据进行处理分析,但Hadoop集群的整体性能却取决于CPU、内存、网络以及存储之间的性能平衡。而在这篇文章中,我们将探讨如何为Hadoop集群构建高性能网络,这是对大数据进行处理分析的关键所在。
关于Hadoop
“大数据”是松散的数据集合,海量数据的不断增长迫使企业需要通过一种新的方式去管理。大数据是结构化或非结构化的多种数据类型的大集合。而 Hadoop则是Apache发布的软件架构,用以分析PB级的非结构化数据,并将其转换成其他应用程序可管理处理的形式。Hadoop使得对大数据处理成为可能,并能够帮助企业可从客户数据之中发掘新的商机。如果能够进行实时处理或者接近实时处理,那么其将为许多行业的用户提供强大的优势。
Hadoop是基于谷歌的MapReduce和分布式文件系统原理而专门设计的,其可在通用的网络和服务器硬件上进行部署,并使之成为计算集群。
Hadoop模型
Hadoop的工作原理是将一个非常大的数据集切割成一个较小的单元,以能够被查询处理。同一个节点的计算资源用于并行查询处理。当任务处理结束后,其处理结果将被汇总并向用户报告,或者通过业务分析应用程序处理以进行进一步分析或仪表盘显示。
为了最大限度地减少处理时间,在此并行架构中,Hadoop“moves jobs to data”,而非像传统模式那样“moving data to jobs”。这就意味着,一旦数据存储在分布式系统之中,在实时搜索、查询或数据挖掘等 *** 作时,如访问本地数据,在数据处理过程中,各节点之间将只有一个本地查询结果,这样可降低运营开支。
Hadoop的最大特点在于其内置的并行处理和线性扩展能力,提供对大型数据集查询并生成结果。在结构上,Hadoop主要有两个部分:
Hadoop分布式文件系统(HDFS)将数据文件切割成数据块,并将其存储在多个节点之内,以提供容错性和高性能。除了大量的多个节点的聚合I/O,性能通常取决于数据块的大小——如128MB。而传统的Linux系统下的较为典型的数据块大小可能是4KB。
MapReduce引擎通过JobTracker节点接受来自客户端的分析工作,采用“分而治之”的方式来将一个较大的任务分解成多个较小的任务,然后分配给各个TaskTrack节点,并采用主站/从站的分布方式(具体如下图所示):
Hadoop系统有三个主要的功能节点:客户机、主机和从机。客户机将数据文件注入到系统之中,从系统中检索结果,以及通过系统的主机节点提交分析工作等。主机节点有两个基本作用:管理分布式文件系统中各节点以及从机节点的数据存储,以及管理Map/Reduce从机节点的任务跟踪分配和任务处理。数据存储和分析处理的实际性能取决于运行数据节点和任务跟踪器的从机节点性能,而这些从机节点则由各自的主机节点负责沟通和控制。从节点通常有多个数据块,并在作业期间被分配处理多个任务。
部署实施Hadoop
各个节点硬件的主要要求是市县计算、内存、网络以及存储等四个资源的平衡。目前常用的并被誉为“最佳”的解决方案是采用相对较低成本的旧有硬件,部署足够多的服务器以应对任何可能的故障,并部署一个完整机架的系统。
Hadoop模式要求服务器与SAN或者NAS进行直接连接存储(DAS)。采用DAS主要有三个原因,在标准化配置的集群中,节点的缩放数以千计,随着存储系统的成本、低延迟性以及存储容量需求不断提高,简单配置和部署个主要的考虑因素。随着极具成本效益的1TB磁盘的普及,可使大型集群的TB级数据存储在DAS之上。这解决了传统方法利用SAN进行部署极其昂贵的困境,如此多的存储将使得Hadoop和数据存储出现一个令人望而却步的起始成本。有相当大一部分用户的Hadoop部署构建都是采用大容量的DAS服务器,其中数据节点大约1-2TB,名称控制节点大约在1-5TB之间,具体如下图所示:
对于大多数的Hadoop部署来说,基础设施的其他影响因素可能还取决于配件,如服务器内置的千兆以太网卡或千兆以太网交换机。上一代的CPU和内存等硬件的选择,可根据符合成本模型的需求,采用匹配数据传输速率要求的千兆以太网接口来构建低成本的解决方案。采用万兆以太网来部署Hadoop也是相当不错的选择。
万兆以太网对Hadoop集群的作用
千兆以太网的性能是制约Hadoop系统整体性能的一个主要因素。使用较大的数据块大小,例如,如果一个节点发生故障(甚至更糟,整个机架宕机),那么整个集群就需要对TB级的数据进行恢复,这就有可能会超过千兆以太网所能提供的网络带宽,进而使得整个集群性能下降。在拥有成千上万个节点的大型集群中,当运行某些需要数据节点之间需要进行中间结果再分配的工作负载时,在系统正常运行过程中,某个千兆以太网设备可能会遭遇网络拥堵。
每一个Hadoop数据节点的目标都必须实现CPU、内存、存储和网络资源的平衡。如果四者之中的任意一个性能相对较差的话,那么系统的潜在处理能力都有可能遭遇瓶颈。添加更多的CPU和内存组建,将影响存储和网络的平衡,如何使Hadoop集群节点在处理数据时更有效率,减少结果,并在Hadoop集群内添加更多的HDFS存储节点。
幸运的是,影响CPU和内存发展的摩尔定律,同样也正影响着存储技术(TB级容量的磁盘)和以太网技术(从千兆向万兆甚至更高)的发展。预先升级系统组件(如多核处理器、每节点5-20TB容量的磁盘,64-128GB内存),万兆以太网卡和交换机等网络组件是重新平衡资源最合理的选择。万兆以太网将在Hadoop集群证明其价值,高水平的网络利用率将带来效益更高的带宽。下图展示了Hadoop集群与万兆以太网的连接:
许多企业级数据中心已经迁移到10GbE网络,以实现服务器整合和服务器虚拟化。随着越来越多企业开始部署Hadoop,他们发现他们完全不必要大批量部署1U的机架服务器,而是部署更少,但性能更高的服务器,以方便扩展每个数据节点所能运行的任务数量。很多企业选择部署2U或4U的服务器(如戴尔 PowerEdge C2100),每个节点大约12-16个核心以及24TB存储容量。在这种环境下的合理选择是充分利用已经部署的10GbE设备和Hadoop集群中的 10GbE网卡。
在日常的IT环境中构建一个简单的Hadoop集群。可以肯定的是,尽管有很多细节需要微调,但其基础是非常简单的。构建一个计算、存储和网络资源平衡的系统,对项目的成功至关重要。对于拥有密集节点的Hadoop集群而言,万兆以太网能够为计算和存储资源扩展提供与之相匹配的能力,且不会导致系统整体性能下降。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13264621.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-28
下一篇 2023-06-28

发表评论

登录后才能评论

评论列表(0条)

保存