人
工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸
近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。
人工智能市场格局
人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 71 万亿美元。
多角度人工智能产业比较
战略部署:大国角逐,布局各有侧重
全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。
美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。
伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。
日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。
基础层面:技术薄弱,芯片之路任重道远
基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。
“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。
依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。
GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。
FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内百度、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。
ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如百度、华为和阿里)在细分领域也有所建树。
总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。
技术层面:乘胜追击,国内头部企业各领风骚
技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。
具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。
在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。
作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。
计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 694%,其中商汤市场份额 206%排名第一。
应用层面:群雄逐鹿,格局未定
应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到3605 亿元,约是技术层的167 倍,基础层的253 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。
中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、 *** 作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。
整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。
透析人工智能发展潜力
基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。
从智能产业基础的角度
产业化程度:增长强劲,产业规模仅次美国
中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、7125 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。
技术创新能力:专利多而不优,海外布局仍有欠缺
专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 7395%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。
从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。
中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 856%的专利仍能得到有效保留。
人才储备:供需失衡,顶尖人才缺口大
人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 618%。欧洲 28 国拥有 43064 名人工智能人才,位居全球第一,占全球总量的 211%。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 226 倍,基础层人才数是中国的 138 倍。
我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。
人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 439%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。
从学术生态的角度
技术创新能力:科研产出表现强劲,产学融合尚待加强
科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 6964%。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的89%增长至2018年的282%, CAGR1794%。2018 年,中国以 24929 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。
我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 3678%;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 080,较 2010 年增长 4423%,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。
从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 736 倍,欧盟的 192 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 245%,与以色列(1006%)、美国(953%)、日本(647%)差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。
中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 457%。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。
从创新环境的角度
研发投入:中美研发投入差距收窄
中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 6077%。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 1443%,同期美国 CAGR 仅 299%。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 197%,低于日本和美国 153、087 个百分点。
资本投入:资金多而项目缺,资本投向侧重终端市场
中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 507%。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 355%。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。
相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。
基于信息熵的 TOPSIS 法:综合指标评估
数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。
展望
转自丨 信息化协同创新专委会
有别于过去五次,7月26日举办的微软小冰第六代发布会,首次走出了微软亚太研究总部的一层报告厅,搬到了798区域大型会场。“发布会规模也从过去的几十家媒体,扩张到数百家、覆盖全国范围的规模。”一位接近微软方面的人士告诉21世纪经济报道记者。
这是一种信号。在过去,微软从未给过小冰任何商业方面的压力,甚至直到近日接受包括21世纪经济报道等媒体采访时,微软小冰负责人李笛依然强调,小冰并没有盈利指标。
但就像发布会本身一样,小冰也在不自觉地走出实验室和研究机构,逐渐尝试商业化。这是小冰发布会首次搬家的底气所在。而经历了过去五代,从小冰萌芽到成长,从拥有二维框架图到二维图像,再到如今三维立体全息影像的展现,小冰正在愈发接近一个人类。
其背后的技术在持续迭代,生态也开始成型。据微软方面介绍,此次发布会是小冰情感技术框架所有部分的全面升级,从首次完成落地时的情商+智商设定,到对话式人工智能、生成模型、全双工语音,如今的小冰开始迈入AI创造的阶段。生态方面,微软此次首次提出构建Dual AI半开放式生态系统,差异化融合合作伙伴优势,打造小冰的专属技能与能力。
“人工智能的最终目标是‘人机协同’,以数字智能帮助人类,但这个方向拥有不同的路线。”微软全球执行副总裁、微软人工智能及微软研究事业部负责人沈向洋表示,“小冰团队走出了不一样的道路。”
AI创造
自去年开始,微软小冰便在创作上拥有诸多尝试,甚至出了一本自己的诗集。如今,小冰将要走得更远。
在发布会现场,沈向洋宣布微软思考了AI创造的三原则:其主体首先必须是兼具IQ与EQ的综合体,而不仅仅是具有IQ;其次,人工智能创造的产物,须能成为具有独立知识产权的作品;第三,人工智能创造的过程,须对应人类某种具有创造力的行为,而不是对人类劳动的简单替代。
小冰的目标,就是成为一个高情商的机器人。“我们计划将AI创造当成一个新兴产业来 *** 作。”在发布会现场,微软人工智能创造事业部总经理徐元春表示,“如果将AI创造当做内容产业、而非简单的文艺创作的话,仅有‘概念车’是不够的,从去年开始我们并行了‘量产车’的工作。”
据介绍,在过去12个月内,小冰主持了21档电视节目、28档广播节目,覆盖中国包括9大卫视在内的41家电视台和广播电台,如今,小冰每天主持的广播节目已经达到25档。在日本和中国,小冰累计生产了2878个小时的视听内容。
同时,小冰的有声读物已经覆盖中国超过90%的早教机器人和80%的线上播放平台。此外,与网易新闻客户端合作的读新闻小冰,已于两个月前突破1000万次新闻阅读评论。在金融等相关领域,小冰同样在进行着持续的内容创造。
这背后的技术支撑,来自于小冰的情感技术框架,而第六代小冰的核心对话引擎与交互感官也得到了进一步升级。微软在第六代小冰身上上线全新的共感模型,并公测一种融合了文本、全双工语音与实时视觉的新感官。
其中,共感模型是一种基于生成模型的对话引擎。据介绍,去年小冰完成的生成模型能够自创回应,而非在已有对话语料库中检索而得,如今的共感模型则进一步提升小冰对于对话内容、领域和节奏的控制力,即小冰可以自创回应来牵引对话的方向。
这一融合了共感模型的对话引擎、全双工语音和实时视觉三个类别的全新感官在测试设备中的公测,令小冰能够通过视觉、语音的实时连续交互,指挥用户完成面容检测,并在该过程中进行开放域对话。
此外,微软还发布了第四版AI歌曲DNN模型。据小冰首席语音科学家栾剑介绍,该版本模型能够快速合成与人类歌手质量相当的歌曲,还能够使小冰自由吸收人类歌手演唱技巧和特质,在模仿之余甚至代替人类完成新作品创作。
不过,尽管微软提出AI创造的原则并进行技术更新,但小冰的所为将只是真正AI创造的起步。“根据2017年Gartner技术成熟度曲线显示,虚拟助手仍需5-10年才能成为主流。”在评论AI创造能力时,Gartner研究副总裁蔡惠芬向21世纪经济报道记者表示,“该应用主要针对智能家居设备中的个人助理或语音控制等狭窄领域,但仍需要包括为不同领域构建知识图谱、自然语言理解与生成等技术的提升。它依然是新兴领域。”
Dual AI生态
除了技术能力升级之外,第六代小冰的最大特点,莫过于开始构建属于自己的生态——Dual AI。
“在微软之前,行业内已经出现多种不同的合作生态与模式,其中最重要的模式有两类,一类是开放赋能模式,通过对外提供SDK/API的形式构建生态系统。”小冰产品负责人彭爽分析道,“另一类是专注于自有的、封闭的平台,通过在平台上开放AI的应用商店形式构建生态环境。”
Dual AI则有所不同,更类似于半开放式生态。“在这样的生态环境上,一方面,微软会直接负责产品体验,把控最具体的、直接与用户接触的产品细节,另一方面,我们并不封闭在自有平台上,而是对外接触甚至直接融入到第三方平台上。”彭爽表示。
之所以如此选择,源于其他两类生态存在各自的问题。其中,封闭模式极大限制了数据之间的自由流通,与AI本质相悖。由于无法获得迭代所需的基础数据量,便难以快速迭代和发挥升级优势。
开放赋能模式中,无论赋能或被赋能一方,则均是相对松散的关系,“也就是说没有人真正对最终的产品体验负责”。例如当前大热的智能音箱之所以实际体验普遍低于预期,正是由于松散合作关系带来的问题。
与此同时,由于开放赋能生态中的API/SKD强调通用性,也就在一定程度上限制了最新最优技术应用的及时性,通过这类接口或工具包获取的数据也未必是最优质的。
而在合作过程中,小冰也在探索属于自己的盈利模式。目前,小冰已上线了包括金融、大众文化、传媒和出版四大商业化领域。“我们探讨过各种各样的AI盈利模式,最终发现为两大类,一类是利用AI技术用更低成本去替代人类低并发、AI高并发的工作,如内容生产,”李笛告诉21世纪经济报道记者,“其次便是AI与人类的协同,通过提升协同转化率实现分成。”
客户与企业的沟通无处不在,客户通过电话、互联网等以各种方式随时随地发起服务请求,如何对来自各种渠道的客户请求快速响应、最优服务处理、统一服务数据、联动周边系统,是打造服务品牌的关键。AI智能语音机器人作为"人工智能"的一大产物,正在潜移默化的给电销行业带来巨大改变,把最繁琐、最枯燥、最耗时的工作交给智能机器人完成,后台分类管理,加以精英销售跟进,不仅大大提高效率,而且能更好的把人力资源进行分配,减少成本!在人工智能时代,这样的问题AI技术可以轻松解决。网谱携手智能外呼 系统利用阿里云全球领先的语音识别、语音合成、自然语言理解等人工智能技术,结合多样化的外呼场景进行智能语音交互,构建了一个“话术标准、应答智能、语音真实、情绪稳定、永不疲倦、成本低廉”的外呼系统。
网谱携手智能外呼机器人能够使用标准话术,不会受情绪影响,能够准确理解用户的回答及意图,像人与人交流一样对话。智能外呼系统可导入待呼叫客户号码等信息,批量生成外呼任务,并在规定时间,针对不同的场景进行批量合规化处理,自动完成外呼成功解决了催收中的质量保证及效率提升的问题。
此外,系统可根据业务特点随时调整话术,持续快速切入市场,灵活应对市场变化,同时可语音转写对话信息并存储,并给予大数据分析从而挖掘市场热点动态,支撑营销决策。
自有核心技术
网谱携手智能外呼系统应用独立自主研发的语音识别、语义理解、语音合成技术,可自主学习,识别准确率稳居行业第一
智能化沟通对话
支持语义打断,即时响应客户中途插话;客户反复追问,不同话术回复,告别死板;支持话术带参,合成播报客户姓名等变量信息,拟人度高,真实自然
灵活应对场景变化
通话过程中,发现客户意向强烈或持续追问,可随机应变,转接人工坐席,通话结束后,可向客户直接发送短信,进行信息确认、内容推送
场景话术丰富
国内首创外呼机器人,多年落地经验,行业知识库丰富,可根据行业特点,面向不同客户群,灵活配置外呼策略,量身定制场景话术,快速达到理想效果;
录音转写调听
全程存储通话语音,实时转写通话文本,对话记录全文检索,通话状态在线监控,随时调听通话录音,还原客户原始意图
数据分析挖掘
提供时间、场景、任务、产品等多维度数据报表,可视化分析关键运营指标,协助各层级管理人员了解服务运营情况,轻松完成外呼任务量化指标
客户意向分类
分析客户通话记录,根据到达节点、交互轮次、通话时长,真实跟踪用户意图,根据不同条件设定,完成客户等级分类,精准筛选优质客户,支撑人工跟进
多种合作服务模式
公有云部署,成本低,使用灵活,可快速上线;私有云部署,数据本地流转,隐私数据安全可控;针对有线路有资源的客户,可合作运营
在某房地产公司,用网谱携手智能外呼机器人向数据库中的购房者推荐楼盘,并邀请有意向的客户到门店看房,客户到了门店再由房产经纪人接待看房,形成“智能外呼机器人泛筛选+房产经纪人精准接待”的新型房产售卖模式。
在金融、房地产、招聘、交通、快递、教育、调研等众多领域,阿里云正在构建“AI+人工”,人机协同工作的客户服务新模式、新风向。用人工智能赋能企业,从而实现AI技术辅助提升企业竞争力,成为阿里云人工智能技术及产品应用的目标。阿里云也将继续专注于人工智能技术的研发与应用,实现促进外呼行业产业升级。如今AI人工智能确实挺火的,人工智能企业也在这十年内快速崛起。云知声作为国内AI独角兽企业,在技术和实力这块的确挺“硬核”。云知声在人工智能赛道中,始终紧跟智能语音技术的发展潮流,围绕智能语音市场需求,坚持独立自主进行前沿性、突破性的技术创新,现已取得了多项重大突破,形成了一套成熟的、经验证的核心技术体系和商业模式。在行业内取得先发优势和领导地位,持续为企业和用户提供智能语音技术和综合解决方案,目前在已经积累了很多成功案例以及众多业内知名合作伙伴。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)