2、尝试登陆不同网站测试
3、下载安装其它浏览器登录尝试
4、备份好手机中存储的重要资料,将手机重置尝试
如果问题依然存在,请将手机送到附近服务中心检测维修
例如您手机无法正常上网,请检查如下情况:
1、升级为4G套餐后如不重启手机则无法正常使用上网功能;
2、确认是否有网络,建议您可在信号强的地方使用;
3、检查帐户是否还有话费,若余额不足则需充值后才能使用;
4、可关机3-5分钟后,重启手机再进行尝试;
5、检查USIM卡是否有插好,若已插好但还是无法使用,则建议您到营业厅检查USIM卡是否有故障,或换卡测试;
6、如当月使用流量达到封顶值会自动关闭网络,建议您留意我司短信提醒或查询套餐产品说明。
因为数据未被记录。
通信大数据行程卡,是由中国信通院联合中国电信、中国移动、中国联通三家基础电信企业利用手机“信令数据”,通过用户手机所处的基站位置获取,为全国16亿手机用户免费提供的查询服务,手机用户可通过服务,查询本人前14天到过的所有地市信息。
截至2020年3月25日,累计查询量已超过45亿次。
2021年1月8日20时30分起,行程卡将不再对包含中高风险区域的地市名称标记为红色,变更为在城市名称后括号备注包含中高风险区域,备注仅作为出行提示,不关联健康状况。3月30日,国家政务服务平台 “防疫健康码”已整合 “通信大数据行程卡”相关信息,可在健康码中显示用户,是否去过中高风险地区等行程信息了,助力健康码 “一码通行”。
8月5日,国务院联防联控机制召开新闻发布会,“通信行程卡”累计提供查询服务超120亿次,成为各地做好疫情防控的重要手段。
在RedHat服务器上使用“systemctl status cloudera-scm-server”命令查看cloudera-scm-server服务状态为exited(正常的服务应该是active(running)),显示如下:
总结
大数据视频推荐:
腾讯课堂
CSDN
大数据语音推荐:
企业级大数据技术应用
大数据机器学习案例之推荐系统
自然语言处理
大数据基础
人工智能:深度学习入门到精通
异常值检测与告警一直是工业界非常关注的问题,自动准确地检测出系统的异常值,不仅可以节约大量的人力物力,还能尽早发现系统的异常情况,挽回不必要的损失。个推也非常重视大数据中的异常值检测,例如在运维部门的流量管理业务中,个推很早便展开了对异常值检测的实践,也因此积累了较为丰富的经验。本文将从以下几个方面介绍异常值检测。
1、异常值检测研究背景
2、异常值检测方法原理
3、异常值检测应用实践
异常值检测研究背景
异常值,故名思议就是不同于正常值的值。 在数学上,可以用离群点来表述,这样便可以将异常值检测问题转化为数学问题来求解。
异常值检测在很多场景都有广泛的应用,比如:
1、流量监测
互联网上某些服务器的访问量,可能具有周期性或趋势性:一般情况下都是相对平稳的,但是当受到某些黑客攻击后,其访问量可能发生显著的变化,及早发现这些异常变化对企业而言有着很好的预防告警作用。
2、金融风控
正常账户中,用户的转账行为一般属于低频事件,但在某些金融诈骗案中,一些嫌犯的账户就可能会出现高频的转账行为,异常检测系统如果能发现这些异常行为,及时采取相关措施,则会规避不少损失。
3、机器故障检测
一个运行中的流水线,可能会装有不同的传感器用来监测运行中的机器,这些传感器数据就反应了机器运行的状态,这些实时的监测数据具有数据量大、维度广的特点,用人工盯着看的话成本会非常高,高效的自动异常检测算法将能很好地解决这一问题。
异常值检测方法原理
本文主要将异常值检测方法分为两大类:一类是基于统计的异常值检测,另一类是基于模型的异常值检测。
基于统计的方法
基于模型的方法
1、基于统计的异常值检测方法
常见的基于统计的异常值检测方法有以下2种,一种是基于3σ法则,一种是基于箱体图。
3σ法则
箱体图
3σ法则是指在样本服从正态分布时,一般可认为小于μ-3σ或者大于μ+3σ的样本值为异常样本,其中μ为样本均值,σ为样本标准差。在实际使用中,我们虽然不知道样本的真实分布,但只要真实分布与正太分布相差不是太大,该经验法则在大部分情况下便是适用的。
箱体图也是一种比较常见的异常值检测方法,一般取所有样本的25%分位点Q1和75%分位点Q3,两者之间的距离为箱体的长度IQR,可认为小于Q1-15IQR或者大于Q3+15IQR的样本值为异常样本。
基于统计的异常检测往往具有计算简单、有坚实的统计学基础等特点,但缺点也非常明显,例如需要大量的样本数据进行统计,难以对高维样本数据进行异常值检测等。
2、基于模型的异常值检测
通常可将异常值检测看作是一个二分类问题,即将所有样本分为正常样本和异常样本,但这和常规的二分类问题又有所区别,常规的二分类一般要求正负样本是均衡的,如果正负样本不均匀的话,训练结果往往会不太好。但在异常值检测问题中,往往面临着正(正常值)负(异常值)样本不均匀的问题,异常值通常比正常值要少得多,因此需要对常规的二分类模型做一些改进。
基于模型的异常值检测一般可分为有监督模型异常值检测和无监督模型异常值检测,比较典型的有监督模型如oneclassSVM、基于神经网络的自编码器等。 oneclassSVM就是在经典的SVM基础上改进而来,它用一个超球面替代了超平面,超球面以内的值为正常值,超球面以外的值为异常值。
经典的SVM
1
基于模型的方法
2
基于神经网络的自编码器结构如下图所示。
自编码器(AE)
将正常样本用于模型训练,输入与输出之间的损失函数可采用常见的均方误差,因此检测过程中,当正常样本输入时,均方误差会较小,当异常样本输入时,均方误差会较大,设置合适的阈值便可将异常样本检测出来。但该方法也有缺点,就是对于训练样本比较相近的正常样本判别较好,但若正常样本与训练样本相差较大,则可能会导致模型误判。
无监督模型的异常值检测是异常值检测中的主流方法,因为异常值的标注成本往往较高,另外异常值的产生往往无法预料,因此有些异常值可能在过去的样本中根本没有出现过, 这将导致某些异常样本无法标注,这也是有监督模型的局限性所在。 较为常见的无监督异常值检测模型有密度聚类(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一种典型的无监督聚类方法,对某些类型的异常值检测也能起到不错的效果。该算法原理网上资料较多,本文不作详细介绍。
IF算法最早由南京大学人工智能学院院长周志华的团队提出,是一种非常高效的异常值检测方法,该方法不需要对样本数据做任何先验的假设,只需基于这样一个事实——异常值只是少数,并且它们具有与正常值非常不同的属性值。与随机森林由大量决策树组成一样,IsolationForest也由大量的树组成。IsolationForest中的树叫isolation tree,简称iTree。iTree树和决策树不太一样,其构建过程也比决策树简单,因为其中就是一个完全随机的过程。
假设数据集有N条数据,构建一颗iTree时,从N条数据中均匀抽样(一般是无放回抽样)出n个样本出来,作为这颗树的训练样本。
在样本中,随机选一个特征,并在这个特征的所有值范围内(最小值与最大值之间)随机选一个值,对样本进行二叉划分,将样本中小于该值的划分到节点的左边,大于等于该值的划分到节点的右边。
这样得到了一个分裂条件和左、右两边的数据集,然后分别在左右两边的数据集上重复上面的过程,直至达到终止条件。 终止条件有两个,一个是数据本身不可再分(只包括一个样本,或者全部样本相同),另外一个是树的高度达到log2(n)。 不同于决策树,iTree在算法里面已经限制了树的高度。不限制虽然也可行,但出于效率考虑,算法一般要求高度达到log2(n)深度即可。
把所有的iTree树构建好了,就可以对测试数据进行预测了。预测的过程就是把测试数据在iTree树上沿对应的条件分支往下走,直到达到叶子节点,并记录这过程中经过的路径长度h(x),即从根节点,穿过中间的节点,最后到达叶子节点,所走过的边的数量(path length)。最后,将h(x)带入公式,其中E()表示计算期望,c(n)表示当样本数量为n时,路径长度的平均值,从而便可计算出每条待测数据的异常分数s(Anomaly Score)。异常分数s具有如下性质:
1)如果分数s越接近1,则该样本是异常值的可能性越高;
2)如果分数s越接近0,则该样本是正常值的可能性越高;
RCF算法与IF算法思想上是比较类似的,前者可以看成是在IF算法上做了一些改进。针对IF算法中没有考虑到的时间序列因素,RCF算法考虑了该因素,并且在数据样本采样策略上作出了一些改进,使得异常值检测相对IF算法变得更加准确和高效,并能更好地应用于流式数据检测。
IF算法
RCF算法
上图展示了IF算法和RCF算法对于异常值检测的异同。我们可以看出原始数据中有两个突变异常数据值,对于后一个较大的突变异常值,IF算法和RCF算法都检测了出来,但对于前一个较小的突变异常值,IF算法没有检测出来,而RCF算法依然检测了出来,这意味着RCF有更好的异常值检测性能。
异常值检测应用实践
理论还需结合实践,下面我们将以某应用从20160816至20190921的日活变化情况为例,对异常值检测的实际应用场景予以介绍:
从上图中可以看出该应用的日活存在着一些显著的异常值(比如红色圆圈部分),这些异常值可能由于活动促销或者更新迭代出现bug导致日活出现了比较明显的波动。下面分别用基于统计的方法和基于模型的方法对该日活序列数据进行异常值检测。
基于3σ法则(基于统计)
RCF算法(基于模型)
从图中可以看出,对于较大的突变异常值,3σ法则和RCF算法都能较好地检测出来, 但对于较小的突变异常值,RCF算法则要表现得更好。
总结
上文为大家讲解了异常值检测的方法原理以及应用实践。综合来看,异常值检测算法多种多样 ,每一种都有自己的优缺点和适用范围,很难直接判断哪一种异常检测算法是最佳的, 具体在实战中,我们需要根据自身业务的特点,比如对计算量的要求、对异常值的容忍度等,选择合适的异常值检测算法。
接下来,个推也会结合自身实践,在大数据异常检测方面不断深耕,继续优化算法模型在不同业务场景中的性能,持续为开发者们分享前沿的理念与最新的实践方案。
如您在使用行程卡网页版、微信小程序或App中遇到网络错误等服务不稳定的情况,您仍然可以通过短信方式查询:发送短信CXMYD到所属运营商(电信10001/移动10086/联通10010)进行查询。
8月2日,通信大数据行程卡就出现了短时间的崩溃的情况,许多人纷纷反馈行程卡打不开了。而在今天,又有很多人表示自己的行程卡又崩了,尝试打开行程卡时会出现网络错误、应用服务异常、或者一直持续加载中等各类问题。
之前信通院发布紧急通知称,近日行程卡查询量突增,系统服务压力不断增大,我们正在全力优化,保障稳定运行。
如您在使用行程卡网页版、微信小程序或App中遇到网络错误等服务不稳定的情况,您仍然可以通过短信方式查询:发送短信CXMYD到所属运营商(电信10001/移动10086/联通10010)进行查询。
行程卡介绍:
通信大数据行程卡,是由中国信通院联合中国电信、中国移动、中国联通三家基础电信企业利用手机“信令数据”,通过用户手机所处的基站位置获取 。
为全国16亿手机用户免费提供的查询服务,手机用户可通过服务,查询本人前14天到过的所有地市信息。截至2020年3月25日,累计查询量已超过45亿次。
通信大数据行程卡
数据未被记录。
因为行程卡服务使用的是基站数据,为了确保通信连续、实现覆盖无盲区,行政区划交界处的两地基站信号可能会交叉覆盖,造成结果的偏差。另外在一个城市的驻留时间未超过4小时,是不会被记录的。如果结果有严重偏差,需要及时联系客服获取帮助。
行程卡基于电信大数据,由三大运营商统一提供接口,仅须填写手机号、验证码并确认本人授权,无须填写身份z号、家庭住址,不收集其他个人信息, *** 作上更为简便和安全,充分保护用户隐私。
扩展资料:
“通信大数据行程卡”分析的是 “手机信令数据” ,通过用户手机所处的基站位置获取,信令数据的采集、传输和处理过程自动化,有严格的安全隐私保障机制,查询结果实时可得、方便快捷。
“通信大数据行程卡”的数据可以全国通用,真正做到全国一张网全面覆盖,还可以查询到本人国内手机号的国际行程。这些在确保用户信息安全的前提下,将会为疫情防控、复工复产、道路通行、出入境等方面提供科学精准的技术支撑。
参考资料来源:百度百科-通信大数据行程卡
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)