浪潮服务器NF5270M6适合于哪些应用场景?

浪潮服务器NF5270M6适合于哪些应用场景?,第1张

NF5270M6是一款中端机架式服务器,支持1颗或2颗第三代英特尔®至强®可扩展处理器
支持38核,频率可达43GHz,3条UPI互连链路,单条链路速率可达112GT/s,热设计功率可达 270W。
适用于大数据分析、企业web搭建、erp应用、人工智能、小型虚拟化等场景。

1月上旬,新元科技股价暴涨,其布局的云游戏服务器业务受到关注。记者来到新元科技,与高管进行面对面交流,探究作为轮胎橡胶设备厂商的新元科技,如何布局智能行业机器人,打造智慧工厂、智慧城市另外,记者与新元科技高管就云游戏领域的ARM型服务器进行了沟通。

新元科技高管介绍,公司炼胶设备主业仍将继续发展,清投智能的智慧工厂业务主要为各种智能行业机器人,应用于电站、高铁、戒毒所等固定区域的巡视巡检。另外,公司通过子公司邦威思创布局的ARM颗粒计算云游戏服务器设备2019年开始推广。

(右起分别为邦威思创总经理陈尧、新元科技副总经理张亮)

“职业涉险”机器人

据了解,新元科技主业为智能化输送配料系统,主要产品包括上辅机系统、小料配料称量系统、气力输送系统,用于轮胎橡胶行业的炼胶环节。2017年控股清投智能后,主营业务拓展至大屏幕智能显示控制系统和智能装备业务。

历史财务数据显示,在收购清投智能后,智能制造业务利润不断提高。2017年,新元科技与清投智能净利润分别为208900万元与95284万元,到了2018年,两者净利润分别为700346万元与523930万元,2019年上半年,清投智能净利润已超过母公司,两者分别为253290万元与306886万元。

关于新元科技的发展方向,公司高管介绍,公司整体围绕智能制造展开,发展战略为两条主线:一条是智慧工厂,第二条主线是工业智能机器人。

据了解,智能装备制造与智能机器人项目均由清投智能承载,“清投智能主营业务为大屏幕显示控制系统和智能装备的研发、生产和销售;主要产品包括液晶项目、DLP项目、智能滑雪机、智能qd柜、智能机器人等。”新元科技在财报中称。

新元科技专门介绍了智慧工厂业务的“亮点”——“宝”系列智能巡检机器人,包括应用于电站巡检的“电宝”、应用于安防巡逻的“安宝”、运维辅助机器人“维宝”等。

(清投智能“宝”系列机器人展示图)

(清投智能“宝”系列机器人产品线归类)

新元科技副总经理张亮介绍,“宝”系列机器人绝大部分原材料来自外采,清投智能的优势在于数据采回后的智能化分析处理,同时,在机器人制造时不断整合红外雷达壁障、AI图像识别处理等功能,整合设计也是优势之一。

在市场竞争方面,张亮告诉记者,除了清投智能之外,做巡视巡检机器人的企业以国家电网下属企业为主,向外延伸的很少,公司向外延伸已取得一定成果,向化工厂、煤矿输煤廊桥、中储粮粮食储备库、看守所等应用场景延伸出的销量大于电网销量。

(电宝应用场景)

“现在‘宝’系列机器人的成本较人工成本优势并不突出,但考虑社保、伤亡事故处理、后勤保障等隐性成本,在危险领域,机器人的成本还是有优势的,现在销量增长还可以,但整体的规模还不是特别大。”张亮称。

财务报告显示,截至2018年末,机器人项目营业收入为20011万元,毛利率为3744%。

云游戏服务器进展如何

除上述两条主线外,新元科技还在布局服务器相关业务。据了解,2019年中,新元科技并购邦威思创51%股份,业务拓展至智能视频通讯及专用领域新型异构服务器和ARM颗粒云计算服务器等领域,而ARM服务器在云游戏领域存在应用空间。

(陈尧介绍基于高性能ARM颗粒计算的云游戏服务器的技术特点)

邦威思创总经理陈尧认为,基于高性能ARM颗粒计算的云游戏服务器对比传统服务器有较大优势,这主要因云游戏与ARM计算单元的良好兼容性及其颗粒化计算特点决定,云游戏的每个用户都是独占性用户,需要独立的计算单元或虚拟机进行单独运算,ARM颗粒计算的云游戏服务器是由大量ARM+GPU颗粒计算单元构成,虽然单体ARM颗粒计算单元的运算能力不及传统服务器,但因其并行了众多独立计算单元可供调度,非常适合云游戏等业务的计算处理。

“另外,基于高性能ARM颗粒计算的云游戏服务器的成本方面较传统服务器有非常明显的优势,尤其是低功耗的特点,可以较大地降低大规模的云游戏运营商的运营成本。”陈尧告诉记者。

关于ARM服务器的市场,陈尧称,该业务2019年开始推广,目前量还没有起来。

某专业人士对记者表示,现在云计算和边缘计算已经实实在在产生需求,在5G商用的推动下,相关市场应用预计会越来越大,目前谷歌、亚马逊、微软、英伟达、华为等厂家都已相继发布云游戏产品。

IDC在报告中称,当前以5G、人工智能、物联网为代表的新兴技术正在推动人类进入智能社会,加速了智能化应用爆发性发展,自动驾驶、云游戏、VR/AR等智能化应用的兴起,使得传统单一的X86架构产品很难满足多样化的计算场景需求。

除ARM云游戏服务器外,陈尧还介绍了公司的FCPC协同计算平台系列服务器,较Intel等通用服务器,邦威思创的FCPC产品为利用FPGA+ARM/CPU的异构服务器,可帮助下游应用厂商快速打造各种专业的个性化产品。比如:图像处理机器人,传统处理器方案功耗高、空间大、成本高,应用FCPC方案则可以重点搭载AR引擎、图像分析处理等模块,会更有优势。

(陈尧介绍新型FCPC异构服务器产品的技术特点)

市场推广方面,陈尧表示,市场很大,客户很有兴趣,但还没形成规模,陈尧补充道,“相关产品具有良好的客户粘性,使用的客户会很稳定,会一直使用我们的产品和服务。”

上述服务器行业人士表示,微软和阿里也在搭建FPGA云服务器,都看好FPGA计算能力强、低功耗、小体积的特点,不过,FPGA研发横跨软硬件,需要多方面协调共进,研发难度高。同时,FPGA使用起来不如通用服务器简易,出现问题以后的维养也比较麻烦,能否达到邦威思创的预期市场效果,还需要时间检验。

值得注意的是,截至2019年半年报,新元科技并未单独列示服务器产品相关财务情况,故服务器收入及利润占比尚无从得知。

桌面虚拟化软件几种常见的应用场景:

1开发环境

对于一些设计和研发类型的公司,公司希望通过桌面虚拟化的方式保护内部的核心代码或者图纸等,防止数据的外泄对公司早晨不可预估的损失。

2分支机构

对于很多企业,都有自己的分支机构和营业厅,分布在不同的城市,通过桌面虚拟化,可以实现桌面的中心部署,在应用程序需要更新、部署时,可以在最短的时间内,通过最少的人工完成。

3办公桌面

使用桌面虚拟化模式替换传统的办公PC,将以往原本需要在PC上完成的所有运算工作移到数据中心的虚拟化服务器上来完成。通过这种方式管理员可以集中进行管理运维,而数据又不会散落在用户的PC端。最终用户可以通过PC机或瘦客户机等终端设备来远程连接到企业数据中心的虚拟桌面环境。

4移动办公

与办公桌面方式类似,用户可以通过网络等方式连接到数据中心内部进行远程办公。国内已经有比较多的企业在使用桌面虚拟化的方式进行移动办公。企业管理层人员在外地出差时也可以使用手机、平板设备进行流程办理和公文审批。

5CTI呼叫中心

通过桌面虚拟化的方式对呼叫中心坐席人员的应用或桌面进行虚拟化,既可以保证坐席人员工作环境的可用性,又可以保证对敏感用户信息的保护。

6培训中心

在学校的电子教室、企业的培训中心都存在着大量的计算机设备,通过采用桌面虚拟化及瘦客户机技术,可以降低电力的总体成本,同时将IT人员可以从复杂重复的设备运维中解放出来,将精力应用于其他更具有价值的工作中。

7外包场景

通过桌面虚拟化的方式既可以满足外包工作人员的工作需要,同时又可以符合企业IT的安全及合规要求。

腾讯云cdm产品的应用场景有。
1、放置公司网站和电子商务平台,随着越来越多的公司开始通过互联网开发业务渠道,许多公司将选择将其网站放置在云服务器上,并允许用户直接通过云服务器访问它们。是企业网站,还有博客,电子商务平台等。不仅安全稳定,数据安全,具有成本效益。
2、APP和其他应用程序,是一个可以放置在云服务器上的网站,诸如APP之类的应用程序以及任何希望用户访问网络的应用程序都可以放置在云服务器上。应该注意的是,APP等应用对云服务器配置要求较高,选择配置较高的云服务器。
3、使用云服务器来存储和共享数据,许多公司,数据量大,或需要实时共享。它将专门购买云服务器来存储数据。它高度安全,提供在线下载和数据共享,非常方便。
4、云服务器放置游戏,许多小型游戏都放在云服务器或服务器上,才能访问。很多时候游戏链接不稳定或闪回,这云服务器过载。还有一些用户专门购买云服务器与其进行在线玩。

GPU服务器的主要应用场景有海量计算处理,超强的计算功能可应用与海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等,可能原本需要几天才能完成的数据量,用GPU服务器在几个小时就完成了;GPU服务器还可以作为深度学习训练平台,可直接加速计算服务,亦可直接与外界连接通信等等。思腾合力在GPU服务器的型号方面还是有很多选择的,有自主研发的品牌也有英伟达的,在选择方面还是比较多的,应用的场景也十分广泛。

从服务器的硬件架构来看,AI服务器是采用异构形式的服务器,在异构方式上可以根据应用的范围采用不同的组合方式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等。与普通的服务器相比较,在内存、存储、网络方面没有什么差别,主要在是大数据及云计算、人工智能等方面需要更大的内外存,满足各种数据的收集与整理。
我们都知道普通的服务器是以CPU为算力的提供者,采用的是串行架构,在逻辑计算、浮点型计算等方面很擅长。因为在进行逻辑判断时需要大量的分支跳转处理,使得CPU的结构复杂,而算力的提升主要依靠堆砌更多的核心数来实现。
但是在大数据、云计算、人工智能及物联网等网络技术的应用,充斥在互联网中的数据呈现几何倍数的增长,这对以CPU为主要算力来源的传统服务提出了严重的考验,并且在目前CPU的制程工艺、单个CPU的核心数已经接近极限,但数据的增加却还在持续,因此必须提升服务器的数据处理能力。因此在这种大环境下,AI服务器应运而生。
现在市面上的AI服务器普遍采用CPU+GPU的形式,因为GPU与CPU不同,采用的是并行计算的模式,擅长梳理密集型的数据运算,如图形渲染、机器学习等。在GPU上,NVIDIA具有明显优势,GPU的单卡核心数能达到近千个,如配置16颗NVIDIA Tesla V100 Tensor Core 32GB GPUs的核心数可过10240个,计算性能高达每秒2千万亿次。且经过市场这些年的发展,也都已经证实CPU+GPU的异构服务器在当前环境下确实能有很大的发展空间。
但是不可否认每一个产业从起步到成熟都需要经历很多的风雨,并且在这发展过程中,竞争是一直存在的,并且能推动产业的持续发展。AI服务器可以说是趋势,也可以说是异军崛起,但是AI服务器也还有一条较长的路要走,以上就是浪潮服务器分销平台十次方的解答。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13275134.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-05
下一篇 2023-07-05

发表评论

登录后才能评论

评论列表(0条)

保存