监控存储服务器怎么和录像机连接

监控存储服务器怎么和录像机连接,第1张

录像机连接硬盘储存服务器的方法:
首先要有数据传输线,然后对应的接口连接,记得红白口要连接正确,否则会出现无图像无声影的问题。
用于快递储物设备的监控系统,其特征在于:包括红外线人体感应传感器、主控制器、信息存储器、针孔摄像头、 *** 作屏、监控硬盘录像机和监控摄像头,所述红外线人体感应传感器、主控制器、信息存储器、针孔摄像头、 *** 作屏、监控硬盘录像机和监控摄像头均安装在快递储物设备上,所述针孔摄像头安装在 *** 作屏上,所述主控制器分别与红外线人体感应传感器、信息存储器、针孔摄像头、 *** 作屏和监控硬盘录像机连接,所述监控摄像头与监控硬盘录像机连接。

摄像头视频采集压缩及传输

引言 :

摄像头基本的功能还是视频传输,那么它是依靠怎样的原理来实现的呢?所谓视频传输:

就是将一张张传到屏幕,由于传输速度很快,所以可以让大家看到连续动态的画面,就像放一样。一般当画面的传输数量达到 每秒24帧 时,画面就有了连续性。

下边我们将介绍摄像头视频采集压缩及传输的整个过程。

一.摄像头的工作原理(获取视频数据)

摄像头的工作原理大致为:景物通过 镜头(LENS) 生成的 光学图像 投射到 图像传感器 表面上,然后转为 电信号 ,经过 A/D (模数转换)转换后变为 数字图像信号 ,再送到 数字信号处理芯片 (DSP)中加工处理,再通过 USB接口 传输到电脑中处理,通过显示器就可以看到图像了。下图是摄像头工作的流程图:

注1:图像传感器(SENSOR)是一种半导体芯片,其表面包含有几十万到几百万的光电二极管。光电二极管受到光照射时,就会产生电荷。

注2:数字信号处理芯片DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通过一系列复杂的数学算法运算,对数字图像信号参数进行优化处理,并把处理后的信号通过USB等接口传到PC等设备。

1 ISP(image signal processor)(镜像信号处理器)

2 JPEG encoder(JPEG图像解码器)

3 USB device controller(USB设备控制器)

而视频要求将获取的视频图像通过互联网传送到异地的电脑上显示出来这其中就涉及到对于获得的视频图像的传输。

在进行这种的传输时,必须将进行压缩,一般压缩方式有如H261、JPEG、MPEG等,否则传输所需的带宽会变得很大。大家用RealPlayer不知是否留意,当播放的时候,在播放器的下方会有一个传输速度250kbps、400kbps、1000kbps…画面的质量越高,这个速度也就越大。而摄像头进行视频传输也是这个原理,如果将摄像头的分辨率调到640×480,捕捉到的每张 大小约为50kb左右,每秒30帧,那么摄像头传输视频所需的速度为50×30/s=1500kbps=15Mbps。而在实际生活中,人们一般用于网络视频聊天时的分辨率为320×240甚至更低,传输的帧数为每秒24帧。换言之,此时视频传输速率将不到300kbps,人们就可以进行较为流畅的视频传输聊天。如果采用更高的压缩视频方式,如MPEG-1等等,可以将传输速率降低到200kbps不到。这个就是一般视频聊天时,摄像头所需的网络传输速度。

二.视频压缩部分

视频的压缩 是视频处理的核心,按照是否实时性可以分为非实时压缩和实时压缩。而视频传输(如QQ视频即时聊天)属于要求视频压缩为实时压缩。

下面对于视频为什么能压缩进行说明。

视频压缩是有损压缩,一般说来,视频压缩的压缩率都很高,能够做到这么高的压缩率是因为视频图像有着非常大的 时间和空间的冗余度 。所谓的 时间冗余度 指的是两帧相邻的图像他们相同位置的像素值比较类似,具有很大的相关性,尤其是静止图像,甚至两帧图像完全相同,对运动图像,通过某种运算(运动估计),应该说他们也具有很高的相关性;而空间相关性指的是同一帧图像,相邻的两个像素也具备一定的相关性。这些相关性是视频压缩算法的初始假设,换句话说,如果不满足这两个条件(全白噪声图像,场景频繁切换图像等),视频压缩的效果是会很差的。

去除时间相关性的关键算法是运动估计,它找出当前图像宏块在上一帧图像中最匹配的位置,很多时候,我们只需要把这个相对坐标记录下来,就够了,这样就节省了大量码字,提高了压缩率。视频压缩算法中,运动估计永远是最关键最核心的部分。去除空间相关性是通过DCT变换来实现的,把时域上的数据映射到频域上,然后对DCT系数进行量化处理,基本上,所有的有损压缩,都会有量化,它提高压缩率最明显。

图像的原始文件是比较大的,必须经过图像压缩才能够进行快速的传输以及顺畅的播放。而压缩比正是来衡量影像压缩大小的参数。 一般来说,摄像头的压缩比率大都是5:1。也就是说,如果在未压缩之前30秒的图像的容量是30MB,那么按照摄像头5:1的压缩比率来对图像进行压缩以后,它的大小就变成了6MB了。

主要的视频压缩算法包括:M-JPEG、Mpeg、H264、Wavelet(小波压缩)、JPEG 2000、AVS。

基本上视频压缩的核心就这些。

三.视频传输部分

为了保证数字视频网络传输的实时性和图像的质量,传输层协议的选择是整个设计和实现的关键。Internet在IP层上使用两种传输协议:一种是TCP(传输控制协议),它是面向连接的网络协议;另一种是UDP(用户数据报协议),它是无连接的网络协议。

TCP 传输 :TCP(传输控制协议)是一种面向连接的网络传输协议。支持多数据流 *** 作,提供流控和错误控制,乃至对乱序到达报文的重新排序,因此,TCP传输提供了可靠的数据传输服务。

使用TCP传输的一般的过程:

客户机向服务器发出连接的请求后,服务器接收到后,向客户机发出连接确认,实现连接后,双方进行数据传输。

UDP 传输 : UDP(用户数据报协议)是一种无连接的网络传输协议。提供一种基本的低延时的称谓数据报的传输服务。不需要像TCP传输一样需预先建立一条连接。UDP无计时机制、流控或拥塞管理机制。丢失的数据不会重传。因此提供一种不可靠的的应用数据传输服务。但在一个良好的网络环境下如 局域网内,使用UDP传输数据还是比较可靠,且效率很高。

IP 组播技术: 组播技术是一种允许一个或多个发送者发送单一或多个发送者的数据包到多个接收者的网络技术。组播源把数据报发送到特定的组播组,而只有加入到该组播组的主机才能接收到这些数据包。组播可大大节省网络宽带,因为无论有多少个目标地址,在整个网络的任何一条链路上只船送单一的数据包。

1TCP/IP 协议和实时传输

TCP/IP协议最初是为提供非实时数据业务而设计的。IP协议负责主机之间的数据传输,不进行检错和纠错。因此,经常发生数据丢失或失序现象。为保证数据的可靠传输,人们将TCP协议用于IP数据的传输,以提高接收端的检错和纠错能力。当检测到数据包丢失或错误时,就会要求发送端重新发送,这样一来就不可避免地引起了传输延时和耗用网络的带宽。因此传统的TCP/IP协议传输实时音频、视频数据的能力较差。当然在传输用于回放的视频和音频数据时,TCP协议也是一种选择。如果有足够大的缓冲区、充足的网络带宽,在TCP协议上,接近实时的视音频传输也是可能的。然而,如果在丢包率较高、网络状况不好的情况下,利用TCP协议进行视频或音频通信几乎是不可能的。

TCP和其它可靠的传输层协议如XTP不适合实时视音频传输的原因主要有以下几个方面:

1 TCP的重传机制

我们知道,在TCP/IP协议中,当发送方发现数据丢失时,它将要求重传丢失的数据包。然而这将需要一个甚至更多的周期(根据TCP/IP的快速重传机制,这将需要三个额外的帧延迟),这种重传对于实时性要求较高的视音频数据通信来说几乎是灾难性的,因为接收方不得不等待重传数据的到来,从而造成了延迟和断点(音频的不连续或视频的凝固等等)。

2 TCP的拥塞控制机制

TCP的拥塞控制机制在探测到有数据包丢失时,它就会减小它的拥塞窗口。而另一方面,音频、视频在特定的编码方式下,产生的编码数量(即码率)是不可能突然改变的。正确的拥塞控制应该是变换音频、视频信息的编码方式,调节视频信息的帧频或图像幅面的大小等等。

3 TCP报文头的大小

TCP不适合于实时视音频传输的另一个缺陷是,它的报文头比UDP的报文头大。TCP的报文头为40个字节,而UDP的报文头仅为12个字节。并且,这些可靠的传输层协议 不能提供时间戳(Time Stamp)和编解码信息(Encoding Information) ,而这些信息恰恰是接收方(即客户端)的应用程序所需要的。因此TCP是不适合于视音频信息的实时传输的。

4 启动速度慢

即便是在网络运行状态良好、没有丢包的情况下,由于TCP的启动需要建立连接,因而在初始化的过程中,需要较长的时间,而在一个实时视音频传输应用中,尽量少的延迟正是我们所期望的。

由此可见,TCP协议是不适合用来传输实时视音频数据的,为了实现视音频数据的实时传输,我们需要寻求其它的途径。

2RTP 协议适合实时视音频传输

RTP(Real-Time Transport Protocol)/RTCP(Real-Time Transport Control Protocol)是一种应用型的传输层协议,它并不提供任何传输可靠性的保证和流量的拥塞控制机制。它是由IETF(Internet Engineering Task Force)为视音频的实时传输而设计的传输协议。RTP协议位于UDP协议之上,在功能上独立于下面的传输层(UDP)和网络层,但不能单独作为一个层次存在,通常是利用低层的UDP协议对实时视音频数据进行组播(Multicast)或单播(Unicast),从而实现多点或单点视音频数据的传输。

UDP是一种无连接的数据报投递服务,虽然没有TCP那么可靠,并且无法保证实时视音频传输业务的服务质量(QoS),需要RTCP实时监控数据传输和服务质量,但是,由于UDP的传输延时低于TCP,能与音频和视频流很好地匹配。因此,在实际应用中,RTP/RTCP/UDP用于音视频媒体,而TCP用于数据和控制信令的传输。

总结 :如果接收端和发送端处于同一个局域网内,由于有充分的带宽保证,在满足视频传输的实时性方面,TCP也可以有比较好的表现,TCP和基于UDP的RTP的视频传输性能相差不大。由于在局域网内带宽不是主要矛盾,此时视频数据传输所表现出来的延时主要体现为处理延时,它是由处理机的处理能力以及采用的处理机制所决定的 。但是当在广域网中进行视频数据传输时,此时的传输性能极大地取决于可用的带宽,由于TCP是面向连接的传输层协议,它的重传机制和拥塞控制机制,将使网络状况进一步恶化,从而带来灾难性的延时。同时,在这种网络环境下,通过TCP传输的视频数据,在接收端重建、回放时,断点非常明显,体现为明显的断断续续,传输的实时性和传输质量都无法保障。相对而言,采用RTP传输的视频数据的实时性和传输质量就要好得多。

四.视频图像的异地显示

当压缩过的视频通过互联网传输到异地的时候,对于互联网传输过来的视频信息,首先是要进行解码,然后才是显示。解码的芯片有一定的性能要求,比编码器低些,但是毕竟是视频数据处理,通用的芯片(不支持MMX等多媒体指令)可能会比较吃力。显示设备主要有电视、监视器和显示器,他们的信号接口是不一样的,电视监视器是模拟的电信号,显示器的输入应该是数字信号。

以上是摄像头如何获取图像数据及获取的数据存放在什么地方,如何压缩和传输及如何在异地释放和播放出来的整个过程

视频监控随着社会的进步,数字化、网络化、智能化已成为一种发展趋势。数字监控系统也逐步进入大规模商业应用阶段,视频监控系统也随之经历了三个时代。
第一代:模拟时代。视频以模拟方式采用同轴电缆进行传输,并由控制主机进行模拟处理。

第二代:半数字时代。视频以模拟方式采用同轴电缆进行传输由多媒体控制主机或硬盘录像主机(DVR)进行数字处理与存贮。
第三代: 全数字时代。基于网络,以数字视频处理技术为核心,综合利用光电传感器、数字化图像处理、嵌入式计算机系统、数据传输网络、自动控制和人工智能等技术的一种新型数字监控系统,典型的产品就是网络视频服务器。
网络视频服务器,就是安装在网络上传送影像及监视的一体型网络服务器,不需要另外的电脑,在因特网上利用标准网络浏览器实时可以看到高画质影像的最新概念的网络监视装备。
网络视频服务器随着应用面的越来越广,推出的产品也日渐丰富,下面就针对网络视频服务器的一些特点和区别来做下介绍:
1)压缩格式
网络视频服务器作为网络应用的新型产品,适应网络传输的要求也必然成为产品开发的重要因素,而这其中视频图像的技术又成为关键。在目前中国网络摄像机和视频服务器的产品市场上,各种压缩技术百花齐放,可以分为:M-JEPG,MPEG4、H264等。

M-JEPG的特点:M-JPEG采用的是帧内压缩方式,图像清晰、稳定,适于视频编辑,而且可以灵活设置每路的视频清晰度和压缩帧数。另外,因其压缩后的格式可以读取单一画面,因此可以任意剪接,特别适用与安防取证的用途。
MPEG4的特点: MPEG-4的着眼点在于解决低带宽上音视频的传输问题,在164KHZ的带宽上,MPEG-4平均可传5-7帧/秒。采用MPEG-4压缩技术的网络型产品可使用带宽较低的网络,如PSTN,ISDN,ADSL等,大大节省了网络费用。另外,MPEG-4的最高分辨率可达720×576,接近DVD画面效果,基于图像压缩的模式决定了它对运动物体可以保证有良好的清晰度。MPEG-4所有的这些优点,使它成为当前网络产品生产厂商开发的重要趋势之一。
H264的特点:H264标准使运动图像压缩技术上升到了一个更高的阶段,在较低带宽上提供高质量的图像传输是H264的应用亮点。H264具有比MPEG和H263++更优秀的PSNR性能。
2)监控路数
根据监控点的多少,可以计算要选配多少台网络视频服务器。目前市场上的网络视频服务器可支持一路、两路或四路视频图像输入。每一路可以接一台模拟摄像机,来监控一个监视点。
但由于支持的图像路数越多,对产品的性能参数要求也就越高,如假设两路或四路输出的数字视频图像的总帧数资源为25帧/秒,其实是多路共享25帧/秒,这样每一路的速度是很慢的,就不如选多台单路的网络视频服务器。但现在有四路共享120帧/秒的产品,也就是说可以达到每路30帧/秒,这样就可以真正实现四路实时。像泰和SV-9400就是这样的产品。
3)是否支持音频
一般的网络摄像机只具有视频功能,没有音频功能或者音视频效果不同步。这就要根据客户的具体情况来选购,有些监控场地是不需要音频的。
4)其它
根据 *** 作系统的不同,网络视频服务器可以分为LINUX *** 作系统和WINDOWS *** 作系统。相对来讲,LINUX *** 作系统更为稳定,可靠。
网络视频服务器还可以分为有线网络视频服务器和无线网络视频服务器。一般我们谈到的都是有线的网络视频服务器,像无线的主要应用在对于有线监控方案有困难的地方,如野外或需要移动的视频监控应用,如车载。
总结:网络视频服务器介绍了这些,对于初次接触这类产品的人,是否多少有了些了解?但在选购的时候一定要彻底了解产品的实用性是否符合自己的需求。附带软件的功能如何,能否多点录像、控制,是否支持软件升级等也要考虑在内。所以考虑完以上几点后再考虑价格因素。
目前在市面上发现一款TYHO IPCAM SV-9100的网络视频服务器,采用最新的H264压缩格式,并且可以配合专用的网络视频解码器,可以一边接网络监控,一边接电视墙等。达到从模拟CCTV到IP网络方便的升级扩展。另为,这款TYHO网络视频服务器各方面的参数都还另人满意,可以说是集众多优点于一身,加上成熟的应用软件,可以轻松满足不同的客户群。

可以,夜视监控摄像头通常可以将录像数据保存在内置的SD卡中,如果您要将录像数据保存到另外一个更大的内存器中,可以通过以下几种方式进行:
1 通过有线网络:如果摄像头和大型内存器都连接在同一个局域网中,那么可以通过有线网络将摄像头和内存器连接在一起,然后将录像数据传输到内存器中。这种方式可以保证数据传输速度比较快。
2 通过无线网络:如果您的摄像头支持Wi-Fi功能,并且与大型内存器连接在同一个Wi-Fi网络中,那么可以通过无线网络将录像数据传输到内存器中。这种方式比较方便,但是数据传输速度可能会受到Wi-Fi信号强度和路由器性能等因素的影响。
在进行数据传输时,您需要考虑到传输速度、容量和稳定性等因素,以避免出现数据丢失或者录像过程中出现中断的情况。此外,在进行摄像头和内存器连接时,您还需要确保连接方式和设置都正确,以保证数据的正常传输和存储。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13280034.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-06
下一篇 2023-07-06

发表评论

登录后才能评论

评论列表(0条)

保存