据知名芯片分析公司Linley Group称,智能手机等边缘设备上的人工智能推理的芯片吸引了越来越多的初创公司和风险投资。
“有更多新的初创公司不断涌现,并继续试图与众不同。”Linley Group的高级分析师Mike Demler在接受 ZDNet 电话采访时表示。
在最近一次于 10 月在加州圣克拉拉举行的线上线下同步活动中,包括Flex Logix、Hailo Technologies、Roviero、BrainChip、Syntiant、Untether AI、Expedera 和 Deep AI 等初创公司分别谈论他们的芯片设计。
Demler 和团队定期编写一份题为《深度学习处理器指南》的研究报告,最新版本预计将于本月发布。 “在这个最新版本中,我统计了 60 多家芯片供应商。”他告诉 ZDNet。
Edge Cortix
边缘AI已成为一个笼统的术语,主要指不在数据中心内的所有事物,尽管它可能包括位于数据中心边缘的服务器。它的范围从智能手机到使用谷歌TinyML 框架微瓦功率级别的嵌入式设备。
Demler 说,其中功耗从几瓦到 75 瓦不等的边缘AI芯片,是市场中最拥挤的部分,通常采用可插拔 PCIe 或 M2 卡的形式。 (75 瓦是 PCI 总线限制。)
“PCIe 卡是市场的热门部分,用于工业人工智能、机器人技术、交通监控。”他解释说。 “你已经看到了 Blaize、FlexLogic 等公司——其中很多公司都在追求这一领域。”
但真正的低功耗也相当活跃。“我想说的是 tinyML 领域也很火爆,从几毫瓦到几微瓦不等。”
Hailo软件工具链
大多数器件都是专用于人工智能的“推理”阶段。
推理发生在神经网络程序经过训练之后,这意味着它的可调参数已经完全开发到足以可靠地形成预测并且可以投入应用。
Demler说,初创公司面临的最初挑战实际上是从一个漂亮的PPT到工程中实际应用。许多人从FPGA仿真开始,然后转向销售成品SoC,或者将他们的设计变为可整合到客户SoC中的IP。
“我们仍然看到许多初创公司对冲他们的赌注,或者尽可能多地追求灵活的收入模式。”Demler 说,“首先在 FPGA 上进行演示,并提供他们的核心 IP 以进行许可。一些初创公司还提供基于 FPGA 的版本作为产品。”
Roviero
市场上有数十家供应商,因此真正点亮的芯片,也面临着各种竞争与挑战。
“很难总结出各家的真正不同。”Demler说。 “我已经看了几十个宣称‘世界第一’或‘世界最好’的PPT。”
有些公司一开始采用了不同的方法,以至于他们很早就脱颖而出,但花了一些时间才结出硕果。
澳大利亚悉尼的 BrainChip Holdings 在 2011 年就开始使用芯片来处理脉冲神经网络,这是一种人工智能的神经形态方法,旨在更准确地模拟人脑的功能。
多年来,该公司展示了其技术如何执行任务,例如使用机器视觉识别赌场地板上的扑克筹码。
“BrainChip 一直在坚决低追求这种尖端架构。”Demler 说。 “它具有独特的能力,它可以真正在设备上学习”,从而进行训练和推理。
FlexLogix
从某种意义上说,BrainChip 是所有初创公司中走得最远的:它上市了。其股票在澳大利亚证券交易所上市,股票代码为“BRN”,去年秋天,该公司发行了美国存托股票,在美国场外交易市场交易,股票代码为“BCHPY”。自那以后,股票的价值已经翻了三倍多。
BrainChip 刚刚开始产生收入。该公司在 10 月份推出了适用于 x86 和 Raspberry Pi 的“Akida”处理器的迷你 PCIe 板,并于上个月宣布了新的 PCIe 板,价格为 499 美元。该公司在 12 月季度的收入为 110 万美元,高于上一季度的 10 万美元。 年度总收入250 万美元,运营亏损 1400 万美元。
事实证明,其他一些奇特的方法很难在实践中实现。芯片初创公司 Mythic 成立于 2012 年,总部位于德克萨斯奥斯汀,一直在寻求使用模拟技术实现AI的新颖路线,它不是处理 1 和 0,而是通过 *** 纵实时的模拟电信号进行计算。
“Mythic 已经生产了一些芯片,但还没有公布我们所知道的任何设计导入。”Demler观察到。“每个人都同意,理论上,模拟应该具有功率效率优势,但在商业上实现这一点要困难得多。”
ArchiTek
Demler 指出,另一家在处理器大会上展示的初创公司 Syntiant 也是以模拟芯片设计方法开始,但认为模拟没有提供足够的功耗优势,并且开发周期更长。
加州欧文市的 Syntiant 成立于 2017 年,专注于非常简单的物体识别,它可以在功能机或可穿戴式设备上以低功耗运行。
“在功能机上,您不需要应用处理器,因此 Syntiant 解决方案是完美的。”Demler说道。
Demler 表示,无论任何一家初创公司是否成功,AI的实用性都意味着AI加速将作为一种芯片技术持续存在。
“人工智能在许多领域变得如此普遍,包括 汽车 、嵌入式处理、物联网、移动、PC、云等,专用加速将变得司空见惯,就像 GPU 用于图形一样。”
Expedera
尽管如此,Demler 说,在通用 CPU、DSP 或 GPU 上运行某些任务会更有效率。这就是为什么英特尔和英伟达以及其他公司正在使用特殊指令(例如矢量处理)来继续他们的架构。
只要风投市场现金充裕,养料丰富,一千朵鲜花都可以绽放,市场可以有不同的方法进行 探索 。
“仍然有如此多的风险投资资金进入这一市场,我对这些增量感到震惊。”Demler说。
Demler 指出,成立于 2018 年的加州圣何塞的 Simaai 获得了巨额融资,该公司正在开发其所谓的“MLSoC”,专注于降低功耗。该公司在 B 轮融资中获得了 8000 万美元。
另一个是特拉维夫的 Hailo Technologies,该公司成立于 2017 年,根据 FactSet 的数据,该公司已母鸡了 3205 亿美元,其中包括最近一轮的 1 亿美元,据称估值为 10 亿美元。
“来自中国的数据,如果属实,将更加惊人。”Demler说,风投资金看起来将暂时继续。 “在风险投资界决定投资其他东西之前,你会看到这些公司将继续获得热捧。”
在某个时候,会发生一次洗牌,但那一天何时到来尚不清楚。
“一些公司最终会离开。”Demler沉思道。“无论是从现在开始的 3 年还是 5 年后,我们都会在这个领域看到更少的公司。”推荐亿万克的M522N6服务器。
亿万克亚当M522N6是一款搭载英特尔第三代至强可扩展系列处理器的2U双路分布式存储型主流服务器,拥有强劲的性能及灵活扩展性,特别适合对于边缘计算类或边缘智能类业务有专项发展需求的各类企业、互联网、通信、交通、能源、金融等行业用户。
服务器必须具有一定的“可扩展性”,这是因为企业网络不可能长久不变,特别是在当今信息时代。如果服务器没有一定的可扩展性,当用户一增多就不能胜任的话,一台价值几万,甚至几十万的服务器在短时间内就要遭到淘汰,这是任何企业都无法承受的。感兴趣的话点击此处,了解一下
小编建议可以到亿万克官网了解一下,亿万克携“算力大师”G952N5、M522N6、R322N6 明星产品初次亮相本届电博会,负责人依次介绍了三款产品的核心优势,产品以杰出的性能、灵活的配置、优异的系统设计、全面的安全性等特点赢得市场的一致好评。国内的桌面云厂家目前主来要有亿万克、华为、深信服、和信创天,恒安永顺、华为和深信服的云桌面都是基于VDI架构的,对后端计算资源的依赖较大,对服务器配置要求较高,特别是在高校,职教机房,环境比较复杂,系统和应用软件多,恒安永顺这方面优势比较突出,多年专注于知虚拟化云计算领域,在高教、职教已有广泛的应用。
推荐亿万克服务器。感兴趣的话点击此处了解一下
亿万克新发布的两大新品服务器,应用于AI 场景、边缘工作、多媒体视频流数据存储、安防监控数据存储、云服务大数据存储、企业数据库资料归档存储等场景。面对用户全新的需求,亿万克对两大新品服务器进行了全新的设计,助力企业实现数字化转型。
在智慧时代应用场景日益繁复的趋势下,智慧算力的需求已经从量扩展到更加多元化的层面,相信在亿万克围绕产品进行持续不懈的研发和探索之下,未来性能更加强大的亿万克亚当服务器将在日趋完善的算力时代下,为驱动行业高质量发展提供新的动能。思腾合力发展的挺好的,不仅是NVIDIA NPN Elite合作伙伴,还是NVIDIA DGX、Tesla系统产品官方授权经销商,成立至今一直专注于人工智能领域,提供AI服务器、AI工作站、公有云、私有云、算力云、分布式存储、边缘计算等产品合整体解决方案商。2021年还收购了包头易慧信息科技有限公司,开启云计算业务,同年11月,思腾合力位于天津滨海区逸仙科学工业园的AI产业园也正式启用了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)