这里我选择的是t2mdeium ,标出的这三个部分是对预留实例和你创建的按需实例特性进行匹配的地方,注意此处的Linux/UNix 并不是 REHL 此坑是比较深,中招,多扣了几刀。这三个部分只要和你的创建的实例匹配上,
亚马逊AWS作为云计算服务的领军者, AWS对SaaS解决方案的设计提供了一些云计算服务最佳实践。
一、将平台化的功能隔离出来,SaaS产品的更新速度是非常快的,但是我们仍然能够总结出一些核心的功能是基本不变或者能够在很多其他新的产品模块中重用的。我们要将这部分功能分离出来进行平台化改造以服务于更多的其它功能,将这些功能平台化以后也会降低整个系统的耦合性从而支撑更多的SaaS应用的功能。对通用功能的平台服务隔离可以更好的调优和独立扩展,同时重用核心服务并结合应用框架的使用会极大提升应用开发的效率。
二、优化成本和性能,在传统的技术架构下这两者之间往往需要进行一定的平衡,而在AWS云的架构下的SaaS服务云模式下往往可以实现鱼与熊掌兼得。在每个架构层次实现d性的横向扩展可以让我们实现按使用量付费的模式,而不需要为了获得强大的性能而提前付出大量的资源成本,同时我们在SaaS的AWS架构下可以使用更小的、平行的资源单位进行扩展,从而更为贴近SaaS环境下的实际资源需求,在合适的场景下尽可能的采用完全由AWS托管的服务(比如Amazon DynamoDB等)来降低SaaS合作伙伴的运维成本并提升效率。
三、针对SaaS解决方案设计的。云计算服务,首先对于多租户的设计要针对SaaS应用自身的特点来进行规划,总体的设计原则是系统会有多个帐号,而一个帐号会对应多个用户,一个用户又会对应多个角色;其次是对于系统处理各种请求时要按照优先级进行分级管理,在通过使用AWS各种服务如SQS、SWF等对系统进行解偶后,对AWS资源集约使用的前提下,对请求分优先级处理会极大提升SaaS架构的处理能力和稳定性;接下来要对监控加大投入力度,借助AWS CloudWatch等监控服务,通过粒度更细的监控来控制分布式资源更为有效的d性伸缩;最后合作伙伴还需要非常了解SaaS应用架构中所有数据的生命周期以及在在各个周期内数据的特点,依据这些特点为数据在AWS的服务中选择正确恰当的存储方式以优化技术架构及降低成本。
四、收集一切可以收集的数据并从这些数据中挖掘出价值。AWS基础架构自身通过CloudWatch服务就可以收集粒度非常细的指标,同时SaaS应用自身也会产生大量日志及指标数据,这些数据和指标不但要密切监控同时也要全量的妥善保存起来,以便后续的大数据挖掘工作。云计算服务,不要担心在传统模式下数据存储的高昂成本,在AWS云的架构模式下有大量诸如Amazon S3、Glacier等成本极低的存储方式。通过分析这些大量的数据来了解你SaaS服务的客户,能够为业务带来巨大的价值,例如实时自动调整用户体验及与之相关的基础架构,通过使用量的分析改进业务模型等等。
对于企业发展来讲,我认为velia维亚服务器是更具优势的,因为物理服务器的安全性和稳定性都比云服务器更好。除此之外,velia维亚的行业经验和技术团队也很让人安心,他们可以为用户提供247无时差的技术支持服务,随时随地守护用户的服务器安全。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)