物联网的技术原理
事实上,物联网的原理是在计算机互联网的基础上,利用RFID、无线数据通信技术,构建覆盖全球数万座建筑的物联网。在这个网络中,建筑物(物品)之间可以在不需要人工干预的情况下进行通信。其实质是利用射频自动识别技术,通过计算机互联网实现物品之间的自动识别和信息的互联与共享。
物联网的核心技术还在云计算中,云计算是物联网实现的核心。物联网的三个关键技术和领域包括:传感器技术、RFID标签技术、嵌入式系统技术。领域:公共事务管理(节能环保、交通管理等)、公共社会服务(医疗健康、家居建筑、金融保险等)、经济发展(能源电力、物流零售等)。
传感器技术是计算机应用中的一项关键技术,将传输线上的模拟信号转化为可由计算机处理的数字信号。
RFID,即射频识别,是一种集射频技术和嵌入式技术于一体的集成技术,在不久的将来将广泛应用于自动识别和货物物流管理。
嵌入式系统技术是集计算机软件、计算机硬件、传感器技术、集成电路技术和电子应用技术为一体的复杂技术。
物联网使用场景,主要体现在几个步骤:采集、传输、计算、展示
物联网终端采集数据,将数据传送给服务器,服务器存储和处理数据,并将数据显示给用户。
例如,自行车是共享的,前向过程是自行车获取GPS位置数据,通过2G网络向服务器报告,服务器记录自行车位置信息,用户在APP终端查看自行车位置。反向处理是用户向服务器发出解锁请求,服务器通过2G网络向自行车发送解锁指令,自行车执行解锁指令。
物联网的大大小小的应用都是基于正向数据采集和反向指令控制实现的。
传输模式的选择:取决于距离和功耗
物联网的联网方式:
近距离低功耗,带BLE或ZigBee。
远距离低功耗,NB-IoT或2G
近距离大数据,带WiFi
大数据远程,使用4G网络
关于网络布局:
远距离传输比短距离传输更昂贵,功耗更高。合理使用远距离和远距离配置可以有效降低物联网终端的成本。
例如,原始共享自行车被2G网络解锁,需要数据的长连接或下行短消息解锁,功耗高,下载的共享自行车丢弃了远程解锁,直接使用手机的蓝牙解锁自行车,节省数据流,降低功耗,本发明还可以提高解锁速度,剩余能量电动自行车智能充电站也是物联网的高科技产品,采用最新的窄带通信技术引领电动自行车充电设备的技术高度。
云服务设计
物联网的云服务器和应用程序设计与I互联网基本一致,Java、PHP和ASP可用于物联网的后台处理。
移动互联网是“人-服务器-人”的框架,物联网是"物-服务器-人"的框架,两者是相同的,物联网终端设备也采用TCP、>
总结简图
花开半夏面向物联网的21个开源软件项目有哪些,物联网开源平台搭建
admin 07-26 04:41 166次浏览
2019独角兽企业重金招聘Python工程师标准
51CTOcom直译物联网市场呈现碎片化、无定形化、不断变化的特征,其性质通常只需关注互 *** 作性。 难怪开源在这方面不俗。 ——客户犹豫不决,害怕将物联网的未来寄托在可能难以定制或互联的专有平台上。
本文介绍了主要的开源软件项目,重点讨论了面向家庭和工业自动化的开源技术。 我们忽略了专注于垂直领域的物联网项目,如Automotive Grade Linux和Dronecode。 我们还忽略了面向互联网的开源 *** 作系统发行版,包括Brillo、Contiki、Mbed、OpenWrt、Ostro、Riot和Ubuntusnappping。这次,我们将智能
这里介绍的21个项目包括由Linuxfoundation管理的两个大型项目: Allseen(Alljoyn )和ocf (iotivity ),以及物联网传感器的端点和网关我还介绍了几个专门针对物联网生态系统特定领域的小项目。 我们曾介绍过更多的项目,但越来越难分清物联网软件和普通软件的区别。 从嵌入式环境到云,越来越多的项目都带有物联网元素。
您声称这21个项目都是开源的,但请确保完整的名称不在本文的范围内。 它们至少在生态系统的一个部分运行Linux,大多数都完全支持Linux,从开发环境到云/服务器、网关和传感器端点部件。 大多数组件都有可以在Linux开发板(如Raspberry Pi和BeagleBone )上运行的组件,大多数都支持Arduino。
物联网领域仍然有很多专有技术,特别是在自上而下的企业平台上。 但是,其中也提供了部分开放访问权限。 例如,威瑞森的ThingSpace针对4G智慧城市APP应用,拥有一套免费的开发API,支持开发板,尽管核心平台本身是独一无二的。 相似的是,亚马逊的AWS物联网工具包包括部分开放的设备SDK和开源入门工具包。
其他主要的专有平台包括苹果的HomeKit和微软的Azure物联网工具包。 在拥有230个成员的Thread Group中,该组织监督基于6LoWPAN的对等Thread网络协议。 Thread Group由谷歌的母公司Alphbet旗下的Nest设立,没有提供像AllSeen和OCF那样全面的开源框架。 但是,它与Brillo相关,也与Weave物联网通信协议相关。 5月,Nest发布了名为OpenThread的开源版Thread。
介绍21个面向物联网的开源软件项目。
AllseenAlliance(Alljoyn ) )。
由Allseenalliance(asa )监管的AllJoyn互 *** 作系统框架可能是市场上采用最广泛的开源物联网平台。
Bug Labs dweet和freeboard
bugglas是从制造基于模块化Linux的有bugh的硬件设备开始的,但很久以前就演变成了与硬件无关的企业级物联网平台。 Bug Labs提供“dweet”消息、警告系统和“freeboard”物联网设计APP。 dweet使用HAPI Web API和JSON来帮助发布和描述数据。 freeboard是一种拖放式工具,用于设计物联网仪表板和可视元素。
DeviceHive
DataArt基于AllJoyn的设备管理平台可以运行在许多云服务上,包括Azure、AWS、Apache Mesos和OpenStack。 DeviceHive专注于使用ElasticSearch、Apache Spark、Cassandra和Kafka,分析大数据。 有些网关组件可以在运行Ubuntu Snappy Core的任何设备上运行。 模块化网关软件与DeviceHive云软件和物联网协议配合使用,作为Snappy Core服务进行部署。
DSA
分布式服务架构(DSA )便于集中式设备的互 *** 作性、逻辑和APP应用。 DSA项目正在构建分布式服务链接(DSLinks )库,以支持协议转换以及与第三方数据源的数据集成。 DSA提供了一个可扩展的网络拓扑,其中包括多个DSLinks,用于在连接到分层代理分层结构的物理互联网边缘设备上运行。
EclipseIOT(Kura ) )。
Eclipse基金会的物联网主要围绕基于Java/OSGi的Kura API容器和聚合平台,支持在服务网上运行的m2m APP应用。 Kura基于Eurotech的Everywhere Cloud物联网框架往往与Apache Camel集成,后者是基于Java的基于规则的路由和中介引擎。 Eclipse物联网子项目包括Paho消息传递协议框架、面向轻量级服务器的Mosquitto MQTT体系结构和Eclipse SmartHome框架。 有些项目实现名为Californium的基于Java的受限APP应用协议(CoAP )。
Kaa
CyberVision支持的Kaa项目为云互联的大型物联网提供了可扩展的端到端物联网框架。
该平台包括一种支持REST的服务器功能,可用于服务、分析和数据管理,通常部署成由Apache Zookeeper协调的节点集群。Kaa的端点SDK支持Java、C++和C开发,负责处理客户机/服务器通信、验证、加密、持久性和数据编排。SDK包括针对特定服务器、支持GUI的模式,这些模式可转换成物联网物件绑定。模式治理语义,并抽象一组迥异设备的功能。
Macchinaio
Macchinaio提供了一种“支持Web、模块化、可扩展的”JavaScript和C++运行时环境,可用于开发在Linux开发板上运行的物联网网关应用程序。Macchinaio支持一系列广泛的传感器和连接技术,包括Tinkerforge bricklet、XBee ZB传感器、GPS/GNSS接收器、串行和GPIO联网设备以及方向感应器。
GE Predix
GE面向工业物联网的平台即服务(PaaS)软件基于Cloud Foundry。它增添了资产管理、设备安全、实时预测分析,并支持不同数据的采集、存储和访问。GE Predix是GE为内部运营而开发的,它已成为最成功的企业物联网平台之一,收入大约60亿美元。GE最近与HPE达成了合作伙伴关系,HPE将把Predix整合到自己的服务中。
Home Assistant
这个作为后起之秀的草根项目提供了一种面向Python的家居自动化方法。
Mainspring
M2MLabs的基于Java的框架针对远程监控、车队管理和智能电网等应用领域中的M2M通信。与许多物联网框架一样,Mainspring高度依赖REST Web服务,并提供了设备配置和建模工具。
Node-RED
这种面向Nodejs开发人员的可视化布线工具拥有基于浏览器的数据流编辑器,可用于设计物联网节点当中的数据流。然后,节点可以迅速部署成运行时环境,并使用JSON来存储和共享。端点可以在Linux开发板上运行,支持的云包括Docker、IBM Bluemix、AWS和Azure。
Open Connectivity Foundation(IoTivity)
英特尔和三星支持的开放互联联盟(OIC)组织和UPnP论坛组成的这个组织正在努力成为物联网方面领先的开源标准组织。OCF的开源IoTivity项目依赖充分利用的JSON和CoAP。
openHAB
OpenIoT
这款基于Java的OpenIoT中间件旨在使用一种公用云计算交付模式,为开放、大规模的物联网应用提供便利。除了表示物联网物件的本体、语义模型和标注外,该平台还包括传感器和传感器网络中间件。
OpenRemote
OpenRemote为家庭和楼宇自动化而设计,它以广泛支持众多智能设备和网络规范而出名,比如1-Wire、EnOcean、 xPL、Insteon和X10等规范。规则、脚本和事件都得到支持,还有基于云的设计工具,可用于用户界面、安装、配置、远程更新及诊断。
OpenThread
这是Nest最近从基于6LoWPAN的物联网Thread无线网络标准分离出来的开源项目,它还得到了ARM、Microchip旗下的Atmel、Dialog、高通和德州仪器的支持。OpenThread实现了所有Thread网络层,还实现了Thread的端点设备、路由器、Leader和边界路由器等角色。
Physical Web/Eddystone
谷歌的Physical Web让蓝牙低能耗(BLE)信标可以将URL发送到智能手机。它针对谷歌的Eddystone BLE信标经过了优化,这提供了除苹果的iBeacon之外的一种开放技术。其想法是,行人可以与任何具有BLE功能的支持性设备(比如汽车停放计时器、标牌或零售产品)联系。
PlatformIO
基于Python的PlatformIO包括IDE、项目生成器和基于Web的库管理器,它是为访问来自基于微控制器的Arduino和基于ARM Mbed的端点的数据设计的。它为200多种板卡提供了预先配置的设置,并与Eclipse、Qt Creator及其他IDE整合起来。
The Thing System
这种基于Nodejs的智能家居“监管”软件声称支持真正的自动化,而不是简单的通知。其自学习人工智能软件可处理许多协同式M2M *** 作,不需要由人干预。缺少云组件恰恰提供了更好的安全性、隐私性和控制性。
ThingSpeak
成立五年的ThingSpeak项目专注于传感器日志、位置跟踪、触发器及提醒以及分析。ThingSpeak用户可以使用用于物联网分析和可视化的MATLAB版本,不需要向Mathworks购买许可证。
Zetta
Zetta是一种面向服务器的物联网平台,利用Nodejs、REST和WebSockets构建而成,奉行基于数据流的“响应式编程”开发理念,用Siren超媒体API连接起来。设备被抽取成REST API,用云服务连接起来,这些服务包括可视化工具,并支持Splunk之类的机器分析工具。该平台可将Linux和Arduino开发板之类的端点与Heroku之类的云平台连接起来,以便构建地理分布式网络。
转载于:>物联网开发需要的技术
一:单片机/嵌入式开发
智能硬件,哎,不就是单片机吗说到底就是一个微控制器,现在出现的智能手表,调光LED灯,蓝牙开锁,WiFi插座等等,说到底不就是单片机开发嘛单片机,电子和通信专业一般都会教51或AVR、计算机系接触不到。现在流行的Arduino也是单片机开发的一种。
但是要做一款智能硬件,技术上只会单片机编程还是不行的。哎呀嘛什么智能硬件,本质上就是一个电子产品!。所以你要开发一款能拿得出手的智能硬件,电子系统设计必须要会的!
二:网络通信协议
智能硬件与传统的电子产品最大的差别,就是智能硬件连上了网络。要连上网络,就需要用到网络通信模块及学习网络通信协议——TCP/IP。
TCP/IP是一个技术的总称,里面包含两种协议TCP、UDP,位于网络通信分层模型的传输层,同时也是由 *** 作系统管理。而>
更多详细参考 官网
1参见官方文档
2推荐参考
登录 kuiper-manager
登录时需要提供 kuiper-manager 的地址,用户名、密码。如下图所示:
本文档不会涵盖 EdgeX 或 LF Edge eKuiper 的基本 *** 作。读者应具备以下基本知识:
为方便大家阅读,下面以界面 *** 作方式介绍
>有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。
1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。
国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。
国外有亚马逊、IBM、SAP、
谷歌、GE、西门子、博世等。
通过以上名单可以发现,这些公司的特点。
这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。
2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。
3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。
物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?
最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。
以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。
不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型
1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。
物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。
在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。
因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。
物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰
伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。
中心化的物联网架构存在三个问题。
一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。
其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。
第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。
简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。
边缘算力的应用场景到底有多广阔?
边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)
第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。
无人驾驶技术:
无人驾驶
智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:
一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。
二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。
三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。
其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。
机会很大
物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。
通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点
连接数告诉增长是物联网行业发展基础
物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。
物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。
物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。
物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等
物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>买品牌服务器合算,性价比更高。
在稳定性方面表现稍好,同时,品牌服务器一般都配有管理模块和完善的售后服务,简化了用户管理步骤,也能在一定程度上帮助用户节约成本,另外,使用品牌服务器对企业的形象也有一定的提升。
至于性能方面,实际上,与普通电脑一样道理,在性能上起决定性作用的还是处理器、内存、硬盘等几大核心配件,因此,配置相同的品牌机与组装机性能上并无明显差异;再来说说稳定性和售后服务,服务器的稳定性一般说来有两个方面决定,一是配件的品质,由于这个原因所导致的服务器稳定性问题并非组装服务器独有,相同配置情况下的品牌服务器和组装服务器,由配件导致系统不稳定的概率是一样的,第二个原因则是服务器机箱布局设计。感兴趣的话点击此处,了解一下
关于服务器购买的选择,亿万克是一个不错的选择,亿万克旗下产品主要有亚当通用机架式服务器系列、亚当液冷服务器系列及蛟云存储设备系列。其中,亿万克服务器产品采用最新的Intel至强可扩展处理器,针对云、企业、高性能计算、网络、安全和物联网工作负载进行优化,支持海量存储空间,可根据业务需求d性扩容,具备丰富的IO扩展能力,可提升I/O 带宽,为数据中心到边缘的各种工作负载提速。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)